SRD991 Intelligent Positioner - All Versions -

The intelligent positioner SRD991 is designed to operate pneumatic valve actuators and can be operated from control systems (e.g. the Foxboro I/A Series System), controllers or PC-based configuration- and operational tools such as FDT/DTM Software. The positioner is available with different communication protocols. The multi-lingual full text graphical-LCD in connection with the 3 push buttons allows a comfortable and easy local configuration and operation as well as the display of valve specific data, and status- and diagnostic messages.

DEVICE FEATURES

Intelligent

- Auto-start with self-calibration
- Self diagnostics, status- and diagnostic messages
- Easy operation with three keys
- Multi-Lingual full text graphical LCD, or LEDs
- VALcare ${ }^{\text {TM }}$ or Valve Monitor DTM for valve diagnostics and predictive maintenance

with communication

- HART, FOUNDATION Fieldbus H1, PROFIBUS-PA, FoxCom
- Configuration by means of local keys, handheld terminal (HART), PC or I/A Series system or with a infrared interface by means of IRCOM
without communication
- Input signal 4 to 20 mA

COMMON FEATURES

- Stroke 8 to 260 mm (0.3 to 10.2 in) with standard lever; larger stroke with special lever
- Angle range up to 95° (up to 300° on request)
- Supply air pressure up to 6 bar (90 psig), with spool valve up to 7 bar (105 psig)
- Single or double-acting
- Mounting on linear actuators according to NAMUR - IEC 50534-6-1 - VDINDE 3847
- Mounting on rotary actuators acc. to VDINDE 3845 or IEC60534-6-2
- Protection class IP 66 and NEMA 4X
- Approved for SIL applications
- Explosion protection: Intrinsic safety according to ATEX and FM/CSA

LABELS

Nameplate B (Example)
Without Ex protection, with options

SRD [Device specification, Model Code]
SER.No [Serial number]
ECEP [Number for special engineered version]
Nameplate B (Example)
With Ex protection acc. to FM

Measurement point label (Example)
Directly fixed or attached

Nameplate B (Example)
With Ex protection acc. to ATEX, T4 / T6, with options

Nameplate A (Example)
acc. to FM, with options

ZUSÄTZLICHE EIN-/ AUSGÄNGE ADDITIONAL INPUTS / OUTPUTS ENTREES / SORTIES ADDITIONELLES					
ModelCode: x P $\mathrm{Px} \times$			ModelCode: $\mathrm{x} \times \mathrm{x} \mathrm{U} \mathrm{x} \mathrm{x}$		
BINÄRAUSGÄNGE BINARY OUTPUTS SORTIES BINAIRES			GRENZWERTGEBER (INDUKTIVE KONTAKTE) LIMIT SWITCH (INDUCTIVE CONTACTS)		
CHANNEL CANAL	TERMINAL BORNES		VALEURS LIMITES (CAPTEURS INDUCTIFS)		
1	81	82			
	83	84			
			LS1	LS2	
			4142	5152	
				6729108	(2)

Additional manufacturing data are stored in the software and are read via communication interface.

TABLE OF CONTENTS

CHAP: CONTENT
 PAGE

LABELS 2
0 SUMMARY
HART Communication and 4-20 mA 4
FOUNDATION Fieldbus Communication 5
PROFIBUS Communication 6
FoxCom (digital) 7
1 METHOD OF OPERATION 8
1.1 General 8
1.2 Block diagram 8
1.3 Operation 8
2 OPERATING MODES 9
3 FUNCTIONAL DESIGNATIONS 10
3.1 Pneumatic accessories. 11
4 MOUNTING TO ACTUATORS 12
4.1 Linear, NAMUR Mounting (left hand) 12
4.2 Linear, NAMUR Mounting (right hand) 14
4.3 Linear, Direct Mounting 16
4.4 Rotary actuators. 18
5 PNEUMATIC CONNECTIONS 20
6 ELECTRICAL CONNECTION 21
7 OPTIONS 22
7.1 "Limit switch" 22
7.2 "Additional In-/Outputs". 23
7.3 "Built-in pressure sensors" 23
CHAP: CONTENT PAGE
8 START-UP 24
General 24
8.1 Setting by means of local keys 24
8.2 Operating modes (LCD / LED) 25
Operation with local keys 26
Table: Menu structure 27
8.3 Configuration of 0 and 100% 29
8.4 Description of menus 31
8.5 Setting of the travel indicator. 46
9 DECOMMISSIONING 46
10 MAINTENANCE 47
10.1 Service Connector and IrCom. 47
10.2 Supply filter replacement 47
10.3 Removal of the electronics unit 47
11 TROUBLE-SHOOTING GUIDE 48
12 SAFETY REQUIREMENTS 53 13
SYSTEM CONFIGURATION 53
DIMENSIONS 58

Installation and start-up of instrument to be carried out only by qualified personnel, familiar with installation and start-up procedures and operation of this product!

Accident prevention

The connected instrument contains mechanically moved parts, e.g. feedback lever, which could cause injuries. The operators have to be instructed accordingly.

Electrical safety

This instrument satisfies the conditions for safety class III, overvoltage category I according to EN 61010-1 or IEC1010-1.
Any work on electrical parts must be done by qualified personnel if any supply is connected to the instrument. The instrument must be used for its designated purpose
and connected in accordance with its connection diagram (see page 21).
Locally applicable installation regulations for electrical equipment must be observed, e.g. in the Federal Republic of Germany DIN VDE 0100 resp. DIN VDE 0800.
The instrument must be operated with safety extra low voltage SELV or SELV-E.
Safety precautions taken in the instrument may be rendered ineffectual if the instrument is not operated in accordance with the Master Instructions.
Limitation of power supplies for fire protection must be observed due to EN 61010-1, appendix F or IEC 1010-1.

Summary - HART and 4-20 mA without Communication

Start-up according to following steps:

Mounting to Actuator (Valve)

The SRD991 can be mounted to linear or rotary actuators. More see page 12.

Connection and Start-up

Upon connection of supply air and a current source of e.g. DC 12 mA to the input terminals (pay attention to polarity, see page 21) an initial start-up can be carried out without any further equipment.
With the local push buttons, basic parameters can be changed, such as type of actuator, side of installation, valve opens/closes with increasing setpoint value, and characteristics curve of the valve (values set ex-factory: stroke actuator, installation left, valve opens with increasing setpoint value, linear characteristics curve).
Thereafter an AUTOSTART can be performed; during which the SRD991 determines independently the geometric data of the actuator as well as control parameters, to ensure an optimized operation with the attached valve. More see page 24.

HART version:
The positioner can be operated either locally or via hand-held terminal or PC (via modem). More see page 53.

System configuration

Version 4-20 mA without communication: Connection as traditional point-to-point connection according to the known regulations of the measuring \& control techniques.
HART version: When using 'Communication' (an a.c. signal which modulates on the $4-20 \mathrm{~mA}$ signal), it must be ensured that the connected outputs, buffer amplifier and barriers are compatible with the frequency ranges used. In addition to the load, the AC impedance requirements must be met. Therefore, it is recommended that only the specified amplifier, barrier and configuration device be used.
More see page 53.
To prevent crosstalk between lines and reduce disturbances through electromagnetic influences, it is recommended that twisted-pair shielded lines be used, with a diameter of AWG 22-14 ($0,3 \ldots 2,5 \mathrm{~mm}^{2}$) and a max. capacity of 100 pF / m.
The line capacities and connected devices may not exceed the maximum values listed for a particular HART protocol.

All components which are connected to the SRD in an explosion hazardous area, require an Ex-Approval. The applicable limit values must not be exceeded. These limit values also have to be adhered to when connecting additional capacitances, inductances, voltage or current sources.

Summary - FOUNDATION Fieldbus

Start-up according to following steps:

Mounting to Actuator (Valve)

The SRD991 can be mounted to linear or rotary actuators. More see page 12.

Connection and Start-up

Upon connection of supply air and a voltage source of e.g. DC 24 V to the input terminals (polarity is random, see page 21) an initial start-up can be carried out without any further equipment.
With the local push buttons, basic parameters can be changed, such as type of actuator, side of installation, valve opens/closes with increasing setpoint value, and characteristics curve of the valve (values set ex-factory: stroke actuator, mounting side: left, valve opens with increasing setpoint value, linear characteristics curve).
Thereafter an AUTOSTART can be performed; during which the SRD991 determines independently the geometric data of the actuator as well as control parameters, to ensure an optimized operation with the attached valve. More see page 24.

Bus Connection

The SRD 991 in the version FOUNDATION Fieldbus is bus compatible, which means that to a 2-core lead, the instruments have to be attached in parallel according to IEC 1158 -2. The lead serves as voltage feeder as well as for digital communication.
A FOUNDATION Fieldbus can consist of one or several segments, each with an individual length of up to 1900 m . An Ex-barrier should not have a further distance than 100 m from a bus terminal. To a segment up to 32 instruments can be attached. A maximum of up to 240 instruments can be addressed (including repeater = connector of segments). To activate each instrument individually, an individual address has to be entered.
From the factory, the address 29h (41) is always stored. This address can be changed automatically with the Nl -Configurator.

System Integration

With the NI-Configurator changes in the configuration of the SRD991 can be carried out. The required files (*.FFO,
*.SYM, *.CFF) can be downloaded from the Internet by path http://www.foxboro-eckardt.com/products/srd991_en.html.

There, a further document is made available, which explains the communication data and parameters in detail.

More informations about FOUNDATION Fieldbus see www.fieldbus.org

Summary - PROFIBUS-PA

Start-up according to following steps:

Mounting to Actuator (Valve)

The SRD991 can be mounted to linear or rotary actuators. More see page 12.

Connection and Start-up

More see page 20.
Upon connection of supply air and a voltage source of e.g.
DC 24 V to the input terminals (polarity is random, see page 21) an initial start-up can be carried out without any further equipment.
With the local push buttons, basic parameters can be changed such as type of actuator, side of installation, valve opens/closes with increasing setpoint value, and characteristics curve of the valve (values set ex-factory: stroke actuator, mounting side: left, valve opens with increasing setpoint value, linear characteristics curve).
Thereafter an AUTOSTART can be performed; during which the SRD991 determines independently the geometric data of the actuator as well as control parameters, to ensure an optimized operation with the attached valve. More see page 24.

Bus Connection

The SRD 991 in the version PROFIBUS-PA is bus compatible, which means that to a 2-core lead the instruments have to be attached in parallel according to IEC 1158-2. The lead serves as voltage feeder as well as for digital communication. To activate each instrument individually, an individual address has to be entered.
From the factory the address 126 is always stored ${ }^{1)}$; Since this address cannot be used during operation, a new address has to be entered in every instrument. This can be done via the local keys, with the FDT/DTM software or a commercial configurator.
To a PROFIBUS-PA-segment with a length of up to 1900 m , up to 32 instruments can be attached. A maximum of up to 126 instruments can be addressed with PROFIBUS.

System Integration

During operation the SRD991 will communicate with a PROFIBUS master class 1. The required GSD-file ("instrument-specific dates") can be downloaded from the Internet by path
http://www.foxboro-eckardt.com/products/srd991_en.html.
There, a further document is made available, which explains the communication data and parameters in detail.

Summary - FoxCom (digital)

Start-up according to following steps:

Mounting to Actuator (Valve)

The SRD991 can be mounted to linear or rotary actuators. More see page 12.

Connection and Start-up

More see page 20.
Upon connection of supply air and a voltage source of e.g.
DC 24 V to the input terminals (pay attention to polarity, see page 21) an initial start-up can be carried out without any further equipment.
With the local push buttons, basic parameters can be changed such as type of actuator, side of installation, valve opens/closes with increasing setpoint value, and characteristics curve of the valve (values set ex-factory: stroke actuator, mounting side: left, valve opens with increasing setpoint value, linear characteristics curve).
Thereafter an AUTOSTART can be performed; during which the SRD991 determines independently the geometric data of the actuator as well as control parameters, to ensure an optimized operation with the attached valve. More see page 24.
FoxCom version:
The positioner can be operated either locally, via PC, or via I/A Series System (FoxCom). More see page 54.

System configuration

When using 'Communication' (a digital signal with constant amplitude), it must be ensured that the connected outputs, buffer amplifier and barriers are compatible with the frequency ranges used. In addition to the load, the AC impedance requirements must be met. Therefore, it is recommended that only the specified amplifier, barrier and configuration device be used.
More see page 54.
To prevent crosstalk between lines and reduce disturbances through electromagnetic influences, it is recommended that twisted-pair shielded lines be used, with a diameter of AWG 22-14 ($0,3 . . .2,5 \mathrm{~mm}^{2}$) and a max. capacity of 100 pF / m.

The line capacities and connected devices may not exceed the maximum values listed for a particular FoxCom protocol.

All components which are connected to the SRD in an explosion hazardous area, require an Ex-Approval. The applicable limit values must not be exceeded. These limit values also have to be adhered to when connecting additional capacitances, inductances, voltages and currents.

1 METHOD OF OPERATION

1.1 General

The intelligent positioner SRD991 1 and the pneumatic actuator 2 form a control loop with the setpoint value w (from master controller or control system), the output pressure y and the position x of the actuator on valve 3 .

Fig.: Fieldbus version
For the supply air, we recommend the FOXBORO ECKARDT FRS923 filter regulator.

The positioner can be attached to both linear and rotary actuators.
Actuators with spring force are controlled by a single acting positioner. Actuators without spring force are controlled by a double acting positioner.

HART or FoxCom version:
The positioner can be operated locally by means of local keys, Hand Held Terminal, remotely via PC-based configuration or a corresponding control system, e.g. I/A Series System.

PROFIBUS-PA or FOUNDATION Fieldbus version:
The positioner can be operated locally by means of local keys, remotely via a corresponding control system, or can be operated via PC-based configuration and operating tools e.g. FDT/DTM software.

1.2 Block diagram

Input (w) each acc. to version:

- Analog operation 4... 20 mA (+FSK)
- Digital operation FSK
13... 36 V DC
- Bus input

1.3 Operation

With the intelligent positioner with input signal 4-20 mA or superimposed HART signal, the supply takes place via the power signal adjacent to the input.
By means of voltage converter 7 , derivation of the internal supply of the electronics takes place. The power value is measured, in A/D transformer 9 converted, and directed via switch 10 to digital controller 11 .

With PROFIBUS-PA or FOUNDATION Fieldbus, the SRD is powered by means of the bus cable. The positioner is operated from a control system by sending a setpoint (setpoint value) to the positioner. The digital signal is directed via the interface component 8 to the digital controller 11. By means of the voltage converter 7 the internal supply of the electronics is established, fed via the bus cable.

With FoxCom digital operation a DC voltage is provided at input w. On this voltage a FSK-signal is modulated. The modulation contains information (eg setpoint value), sent digitally to the control unit 11 across the FSK-unit 8 .

The output of controller 11 drives the electro-pneumatic converter (IP-module) 12, controlling a pre-amplifier 13, the single acting (or double acting) pneumatic power amplifier 14. The output of the amplifier 14 is the output pressure y to the actuator.

The pneumatic amplifiers are supplied with supply air s 1.4 to $6 \operatorname{bar}$ (20 to 90 psig).

The position x of the actuator is sent to the control unit 11 by the position sensor (conductive plastic potentiometer) 15.

Optional gauges 16 , pressure sensors 19,20 , inputs / outputs 21 (two binary outputs; a 4-20 mA output and alarm; control inputs for 'Open/Close' and 'Hold last value') enable additional diagnostic indications and possible intervention. The mechanical limit switch 22 (optional) enables independent alarm signals.

Adjusting, start-up of the positioner as well as the demand for internal information can be made using the local keys 17 with indication given by LCD, 18 or LEDs.

2 OPERATING MODES

Operation of the positioner is divided into individual 'operating modes'. Operating modes may change depending on, for example, key commands or internal calculations. The different operating modes are described in abbreviated form below.

INITIALIZE:

Upon power-up or Reset (pressing of the 3 keys simultaneously), several self-tests are conducted. Individual steps in the self-test process are indicated by the LCD or green LEDs.

If no error occurs the device moves to OUT OF SERVICE, if it is still in a delivery condition; AUTOSTART has to be performed. If AUTOSTART was done already, the device will go to IN OPERATION.

If faults are detected, the code of the faulty self-test will remain (see page 48). If error reoccurs after reset, the device is probably defective and should be sent in for repair.

DEVICE FAULT:

In the event that the LCD shows a message (or red LED lights up constantly and all green LEDs are off), a device fault is signaled. These faults are detected during cyclical self-test.
The device can no longer be operated. This could be caused by a jammed menu key, defective program memory, etc. (see chapter "Trouble-shooting").
If a device error occurs re- peatedly, the device should be sent in for repair.

IN OPERATION:

After performing an AUTOSTART, the device moves to IN OPERATION and will always, even after restarting or resetting, move back to the safety position (de-energized valve position) or FAILSAFE. If setpoint values are fed via communication, the SRD will go to IN OPERATION.

FAILSAFE:

(with FF H1 and Profibus PA communication)
Positioner carries out actions as configured in menu "failure handling". Additionally, the cyclical self-diagnosis takes place.
If the instrument is IN OPERATION, but no setpoint values arrive via communication, the SRD will go to FAILSAFE mode, after a defined time period; either with

- maintaining last value
- output pressureless, or
- with predetermined position.

As soon as setpoint values arrive via communication again, the instrument is immediately back IN OPERATION.

OUT OF SERVICE:

The SRD991 in delivered condition is configured in such a way that it will remain OUT OF SERVICE after power-up until moving to IN OPERATION via the manually initiated function AUTOSTART.
In the device state OUT OF SERVICE, the menu entering mode remains active at all times. If a device has been IN OPERATION already and is removed from an actuator and mounted to another, it is recommended to take the device out of operation via RESET CONFIG (Menu 9.1) prior to disconnecting the device from the first actuator.
This enables the next actuator to be started in the delivered condition (see chapter 8).

CALIBRATE:

During an AUTOSTART function the device is in condition CALIBRATION. The actuator is moved up- and downward several times, and the device could be busy for a few minutes. Subsequently, the device moves to IN OPERATION.

MESSAGE:

The SRD991 continuously supervises important device functions. In the event that limit values are exceeded or operational problems occur, messages are signaled via the LCD or the special LED blinking mode.
The message with the highest priority will be indicated first. With key DOWN additional messages can be called up, with key UP the measuring values can be retrieved. It is possible at all times to reach the menu by pressing the menu keys to possibly eliminate the problem by performing suitable menu functions. Further references may be found in chapter "Trouble-shooting".

SIMULATE (FOUNDATION FIELDBUS version only) During function IN OPERATION, the valve position queried via the communication, can be simulated with a value that has been entered via communication into the instrument during position SIMULATION. Thereby the positioner continues with normal operation and regulates to the "accurate" set value.
For the SRD, this function has to be additionally released or blocked via menu 10.

LCD description, definition of the LEDs and possible operator interventions are described in chapter: START-UP.

3 FUNCTIONAL DESIGNATIONS

1a Adapter, eg. 1/2"-14 NPT
1b Cable gland
2 Plug, interchangeable with Pos. 1
3 Screw terminals ${ }^{1)}$ (11/12) for input (w) or for bus connection IEC 1158-2 ${ }^{3)}$
3a Screw terminals ${ }^{1)}$ for additional inputs / outputs
3b Test sockets $\oslash 2 \mathrm{~mm}$, integrated in terminal block
4 Ground connection
5 Female thread ${ }^{\text {G) }} 1 / 4-18$ NPT or output I (y1)
6 Female thread ${ }^{\text {G) }} 1 / 4-18$ NPT for air supply (s)
7 Female thread ${ }^{\text {G) }} 1 / 4-18$ NPT or output II (y2)
8 Direct attachment hole for output I (y1)
9 Feedback shaft
10 Connection manifold for attachment to stroke actuators (not with VDINDE 3847 version)
11 Connection base for attachment to rotary actuators
12 Travel indicator
13 Key UP
14 Key DOWN
15 Key M (Menu)

16 Status display (1 red LED, 4 green LEDs)
16a LCD with true text in 3 different languages
19 Fixing shaft for limit switch
20 Cover with window to 12
21 Air vent, dust and water protected
22 Data label
23 Tip jacks ${ }^{2)} \varnothing 2 \mathrm{~mm}$ for current measurement
24 Switch ${ }^{2)}$ for current measurement
25 Tip jacks ${ }^{2)} \varnothing 2 \mathrm{~mm}$ for communication
26 Arrow is perpendicular to shaft 9 at angle 0 degree
27 Ball valve for protection class NEMA 4X
28 High cover with built-in limit switch
29 Plug for service connector ${ }^{3)}$
30 IrCom interface
G) With marked letter " G " in the housing the pneumatic connecting threads are cut as G $1 / 4$ instead of $1 / 4-18$ NPT

1) Alternatively Cage clamps (WAGO) instead of screw terminals
2) Only with FoxCom version
3) Not with FoxCom version
4) Depending on the version, the device is equipped with or without LEDs

3.1 Pneumatic Accessories

When mounting, check the proper seating of the O-rings and bolt on the accessories with the two M8 bolts. Unused outputs are closed by means of plastic plugs.

* Unused threads for pressure gauges are closed by means of lock screw Part No. 425024013.

Types with G-threads instead of standard NPT-threads: LEXG-F1: As LEXG-F, however with thread G 1/4 LEXG-G1: As LEXG-G, however with thread G $1 / 4$ LEXG-H1: As LEXG-H, however with thread G 1/2

Alternative:

Amplifier, independent of positioner: (Connection from positioner to amplifier with tubes) LEXG-X1: As LEXG-F1, however externally mounted LEXG-Y1: As LEXG-G1, however externally mounted LEXG-Z1: As LEXG-H1, however externally mounted

4 MOUNTING TO ACTUATORS

4.1 NAMUR Mounting linear actuator, left hand

Applicable to actuators with cast yoke or pillar yoke acc. to NAMUR (DIN IEC 534-6).
Mounting the positioner with pneumatic connections on the left side and electrical connections on the lower right side.

Attachment of the positioner to the actuator is made to the left using the mounting bracket and feedback lever for a NAMUR mount. Use:
attachment kit EBZG -H for a cast yoke, or attachment kit EBZG -K for a pillar yoke.
The side outputs I (or I and II, see page 10) are used. The rear output I is closed by means of a lock screw 522 588013.

Pneumatic connections: Do not use Teflon tape for sealant. The fine fibres could disturb the function of the SRD. Use only Loctite ${ }^{\circledR}$ \#243 for sealant ${ }^{1)}$.

Screw-type glands for electrical connections are positioned on the lower or right side. Any unused threaded holes are closed by plugs.

If housing cover has an air vent, this air vent must facedown when mounted.

4.1.1 Preparation of the positioner

Rotate the shaft stub of shaft 9 so that the flat on the shaft stub is perpendicular to the arrow 26 on the housing at mid travel range (detail see page 17). Fasten the feedback lever \boldsymbol{A} to the shaft by means of spring washer and nut M8.

4.1.2 Preparation of the actuator

Screw the carrier bolt to the stem connector (see page 16) and lock it by means of a counter nut.
A carrier bolt with an adjustable length is used to be able to screw on various coupling pieces.

It consists of a stud \boldsymbol{S}, which is screwed into the coupling piece \boldsymbol{K} (with 3 mm Allen key) and locked with a lock nut M6. The threaded sleeve \boldsymbol{H} is screwed onto it and locked with a lock nut M6. Make sure that the bolt is adjusted to the right length!
Fasten the mounting bracket to the left side of the yoke. For a cast yoke use a screw M8 x 30, for a pillar yoke use two U-bolts and four nuts.

4.1.3 Mounting of the positioner

Fasten the positioner to the mounting bracket using two spring washers and two screws M8 x 80 .
Note, the carrier bolt \boldsymbol{B} is in the slot of the feedback lever \boldsymbol{A} and the compensating spring \boldsymbol{F} touches the carrier bolt.

Fig.: Feedback lever
For optimum utilization of the positioner operating range, it is recommended that the arrangement is adjusted according to the following procedure before fixing. At an actuator position in the middle of travel range, the feedback lever position should be perpendicular to the actuator stem and the angle range should be between $-10^{\circ} \ldots+10^{\circ}$ and $-45^{\circ} \ldots$ $+45^{\circ}$.
Fasten the positioner to the mounting bracket so that a suitable angle range is selected.

It is recommended that the pneumatic and electrical connections are made after adjusting the position.

4.1.4 NAMUR Mounting Dimensions - left hand -

4.2 NAMUR Mounting

 linear actuator, right handRight-hand mounting is done if for instance left-hand mounting is not possible for structural reasons.
Applicable to actuators with cast yoke or pillar yoke acc. to NAMUR (DIN IEC 534-6).
Mounting the positioner with pneumatic connections on the right side and electrical connections on the left side.

Attachment of the positioner to the actuator is made to the right using the mounting bracket and feedback lever for a NAMUR mount. Use: attachment kit EBZG -H for a cast yoke, or attachment kit EBZG -K for a pillar yoke.

The side outputs I (or I and II, see page 10) are used.
The rear output I is closed by means of a lock screw 522 588013.

Pneumatic connections: Do not use Teflon tape for sealant. The fine fibres could disturb the function of the SRD. Use only Loctite ${ }^{\circledR}$ \#243 for sealant ${ }^{1)}$.

Screw-type glands for electrical connections are positioned on the left side. Any unused threaded holes are closed by plugs.

If housing cover has an air vent, this air vent must facedown when mounted.

4.2.1 Preparation of the positioner

Rotate the shaft stub of shaft 9 so that the flat on the shaft stub is perpendicular to the arrow 26 on the housing at mid travel range (detail see page 15). Fasten the feedback lever \boldsymbol{A} to the shaft by means of spring washer and nut M8.

[^0]
4.2.4 NAMUR Mounting Dimensions - right hand -

Attachment to pillar yoke
(with attachment kit EBZG-K)

4.3 Linear actuator, direct mounting

Actuators with appropriately prepared yoke (PA200, PA350) enable mounting of the SRD991 direcly to the actuator yoke.

The attachment of the positioner is accomplished by bolting it directly to the actuator yoke using the feedback lever for a direct mount (with attachment kit EBZG -D).

The rear output I and the side outputs I and II are used as follows (see page 10) :

- Actuator single acting, spring force closes:

The rear output I is used (remove lock screw in hole D). The side output I is closed by means of a lock screw (see page 20).

- Actuator single acting, spring force opens:

The side output I is used.
The rear output I is closed by means of a lock screw.

- Actuator double acting:

The rear output I and the side output II is used.
The side output I is closed by means of a lock screw (see page 20).

Pneumatic connections: Do not use Teflon tape for sealant. The fine fibres could disturb the function of the SRD. Use only Loctite ${ }^{\circledR}$ \#243 for sealant ${ }^{1)}$.
Screw-type glands for electrical connections are positioned on the side. Any idle female threads are closed by means of plugs.

If housing cover has an air vent, this air vent must facedown when mounted.

4.3.1 Preparation of the positioner

Rotate the shaft stub of shaft 9 so that the flat on the shaft stub is perpendicular to the arrow $\mathbf{2 6}$ on the housing at mid travel range (detail see page 17). Fasten the feedback lever A to the shaft by means of spring washer and nut M8.

4.3.2 Preparation of the actuator

Screw in the carrier bolt \boldsymbol{B} on the coupling piece \boldsymbol{K} on the drive spindle \boldsymbol{S} at the lower left and lock it by means of a nut M6.

4.3.3 Mounting of the positioner

Fasten the positioner to the upper part of the yoke using 2 spring washers and 2 screws M8 $\times 80$, as shown above. The rear output I of positioner has contact to the air duct \boldsymbol{R} in the yoke.
Attention: Note the correct position of the O-ring on the yoke for the rear connection I!
Note, the carrier bolt \boldsymbol{B} is in the slot of the feedback lever \boldsymbol{A} and the compensating spring \boldsymbol{F} touches the carrier bolt.

Fig.: Feedback lever

4.3.4 Mounting dimensions - direct mounting -

Feedback lever Code EBZG-A for $8 . .70 \mathrm{~mm}$ travel

Feedback lever FoxPak/FoxTop in Code EBZG-E

Carrier bolt for connection to valve stem

Detail: shaft stub 9 is perpendicular to the arrow 26 on the housing(at mid travel range)

Connection to yoke using the direct connection hole for rear output I (y/y1)

4.4 Mounting to rotary actuators

Applicable to rotary actuators that meet the VDI/VDE 3845 standard for mounting. Installation position of positioner: Mount the positioner so that the pneumatic connections are in the same direction as the longitudinal drive axis of the actuator as shown in the photograph below.

Attention: The feedback shaft 9 of the SRD has no mechanical stop, therefore may spin 360 degrees. The permissible rotation angle range is between +50 and -50 degrees around the arrow at the housing concerning the flat area of the feedback shaft (also see detail page 17 bottom). Since a rotary actuator has a rotary angle of about 90 degrees the mounting as described in the following must be carried out very precisely.

Attachment of the positioner to the actuator is made by using the rotary adaptor kit EBZG -R.

Either the side outputs I (or I and II) are used and the rear output I is closed by means of the lock screw 522588013.

Pneumatic connections: Do not use Teflon tape for sealant. The fine fibres could disturb the function of the SRD. Use only Loctite ${ }^{\circledR}$ \#243 for sealant ${ }^{1)}$.

Screw-type glands for electrical connections are used as needed. Any unused threaded holes are closed by plugs.

Caution! Prevent accumulation of water in the instrument in this mounting position by sealing cable entry against water. Provide a continuous supply of dry instrument air.

4.4.1 Preparation of positioner

Valve must be in failsafe position and the direction of rotation of the actuator drive shaft must be known. These items are extremely important for proper functioning. These items can be checked as follows in case they are not clear:

In the single-acting actuator the force of the installed spring closes. The pressure-less actuator is in failsafe position. Through manually feeding compressed air it can be seen whether the actuator drive shaft rotates to the left or to the right.

In the double-acting actuator (without spring reset) both air chambers are basically equal. Failsafe position can be either "open" or "close". Therefore, indication of the failsafe position has to be determined by engineering. Then the direction of rotation may be determined by manual feeding of compressed air.

Bolt 2 is screwed into actuator drive shaft 1 for subsequent centering of the rotary adaptor 3 . The attachment console is mounted to the stroke actuator (see illustration).

Attachment diagram for bracket

Rotary adaptor

4.4.2 Preparation of the actuator

First the rotary adaptor is being prepared:
For attachment to a counter-clockwise or left turning actuator secure the stud screw 4 in the threaded hole " L " of the rotary adaptor; hole "R" remains open. See Fig. 27.

For attachment to a clockwise or right turning actuator secure the stud screw 4 in the threaded hole " \mathbf{R} " of the rotary adaptor; hole "L" remains open. See Fig. 28. Stud screw should always be tightened into the flat on the on the feedback shaft 9 .

Now place the rotary adaptor $\mathbf{3}$ with two washers 5 on the feedback shaft 9 of the positioner against the stop.

Note :

When the product temperature rises, the drive shaft 1 becomes longer. Therefore, the rotary adaptor 3 must be mounted so that approx. 1 mm (0.04 in .) of clearance results between the drive shaft 1 and the rotary adaptor 3 . This is achieved by placing an appropriate number of washers 5 on the feedback shaft stub 9 before attaching the rotary adaptor. Two washers should result in a clearance of 1 mm .

Figure 27: Mounting if actuator is left-rotating

Now screw and tighten the bolt in the coupling against the flat part of the feedback shaft(do not screw against thread!).

Finally turn the feedback shaft in such a way that the arrow of the coupling points to the arrow of the SRD housing. Beginning and end positions of the actuator drive shaft 1 and feedback shaft 9 are marked in figure 27 (left-rotating actuator) and in figure 28 (right-rotating actuator) by arrows for the respective direction of rotation.
The feedback shaft is now in the normal position corresponding to the failsafe position of the actuator.

4.4.3 Mounting of positioner

SRD and actuator are in failsafe position.
Attach the SRD on the console in such a way that the catch of coupling 3 is guided into the groove of shaft 1. Use bolt 2 to center and align the positioner to the actuator. Be careful not to shift shafts $\mathbf{1}$ and 9 and that both shafts are exactly flush.
Fasten the positioner to the bracket by means of 4 lock washers and 4 screws M6 x 12 .

Figure 28: Mounting if actuator is right-rotating

5 PNEUMATIC CONNECTIONS

WARNING

To avoid any personal injury resulting from bursting of parts, do not exceed maximum supply pressure of positioner and actuator. To avoid any personal injury or property damage from sudden or fast movement, during air connection:
Do not put your finger or other part at any time inside the valve or in any moving part of the actuator. Do not put your finger or other part at any time in the feedback lever mechanism. Do not touch the rear part of the positioner at any time. Connect air supply only after connection Y1 and Y2 (for double acting) are done.

Supply
Supply air pressure 1.4 to 6 bar (20 to 90 psig)
Air supply according to ISO 8573-1

- Solid particle size and density class 2
- Oil rate \qquad
- Pressure dew point 10 K under ambient temperature For air supply, we recommend the FOXBORO ECKARDT FRS923 filter regulator.

Following alignment and mounting of the positioner to the valve, pneumatic tubing has to be provided.

Explanation of abbreviatons:

s Supply air

y1-d Output 1 for direct mounting, depressurized at currentless electronics. When using this output y1 has to be closed by means of hex. screw.
y1 Output 1, depressurized at currentless electronics. When using this output, $\boldsymbol{y 1} 1-d$ has to be closed by means of sealing screw and O-ring.
y2 Output 2 for double-acting actuator. Full pressure at currentless electronics. Closed at single-acting actuator.
$n 1$ Hex. Screw with NPT thread Part No. 522588013 (stainless steel) Part No. 556446016 (plastic)
n2 Sealing screw with O-ring
Unused pneumatic connections must be closed off.
FAIL SAFE POSITION FOR DOUBLE ACTING
Fail safe position of the double acting valve is given by the fail safe action of the pneumatic of the positioner itself. In case positioner is de-energized:
Output Y 1 is 0
Output Y2 is 100\% of air supply pressure
Therefore do pneumatic piping of Y 2 to the chamber of the actuator that should be pressurized to do the requested fail safe. In any case put air supply only when the output $\mathbf{Y} \mathbf{2}$ is connected.

6 ELECTRICAL CONNECTION

W A R N IN G

To avoid any electrical shock, respect the maximum input supply voltage for the device and options. To avoid any personal injury or property damage from sudden or fast movement, during electrical connection:
Do not put your finger or other part at any time inside the valve or in any moving part of the actuator. Do not put your finger or other part at any time in the feedback lever mechanism. Do not touch the rear part of the positioner at any time.

Unused cable glands should be closed off.
Feed in the bus cable through the gland 1. The gland is suitable for cable diameters of 6 to 12 mm (0.24 to 0.47 in). Observe the tightness of the cable entry.
Make the electrical connection of the input line at the screw terminals $3 b$, whereby with fieldbus devices no polarity has to be observed. The terminals are suitable for wire crosssections of 0.3 to $2.5 \mathrm{~mm}^{2}$ (22-14 AWG).

The shield of the bus connection is

- with conductive cable glands (recommended) directly connected with the housing
- with non-conductive cable glands to be placed onto the
inner screw terminal 4 .
Note: When connecting shielded cable connect the cable shield on both sides! (on the positioner as well as on the system side). For selection of cable, see recommendation for cable types acc. to IEC 1158-2.

For connection to a local ground the internal and external ground terminal 4 can be used.

In the connecting terminals test sockets for measuring purposes are integrated. With version HART or FoxCom at clamps 11+ and 12-a hand held terminal or modem for communication can be attached.

ELECTRICAL CONNECTION (continued)

Setpoint
For SRD991-xH (HART) and SRD991-xD (digital w/o Comm.)

Input 4 to 20 mA

For SRD991-xF (FoxCom it2)

Supply voltage ... DC 13 to $36 \mathrm{~V}{ }^{11}$

For SRD991-xP (PROFIBUS-PA)
and SRD991-xQ (FOUNDATION F. H1)

Bus connection acc. to IEC 1158-2
Supply voltage DC 9 to 32 V 1)

Limit Switches,

 Inductive, SRD991-xxxT or U,Two-wire proximity sensors, acc. to DIN 19234 or NAMUR
Supply voltage: DC 8 V

switching amplifier with intrinsically safe control circuit
switching amplifier with intrinsically safe control circuit

Inductive, SRD991-xxxR,
Three-wire proximity sensors

Micro switches, SRD991-xxxV

Option Boards

Two binary outputs (SRD991-xxP)
or Binary in/output (SRD991-xxE)

Two-wire system, acc. to DIN 19234
Supply voltage: DC 8 to $36 \mathrm{~V}{ }^{1)}$
switching amplifier with intrinsically safe control circuit

Two binary inputs (SRD991-xxB)

Binary inputs with internal supply for connection of sensors or switches (switch closed for a normal operation!)

Position feedback 4 to 20 mA and 1 Alarm (SRD991-xxQ)

[^1]
7 OPTIONS

7.1 "Limit switch"

WARNING

To avoid any personal injury do not touch control vanes during operation.

Remove three screws \boldsymbol{A} including tooth lock washer from plastic cover.

Attach limit indicator B so that the flattened shaft end 19 contacts the groove of the limit indicator shaft in the positioner.

Attach limit indicator by means of three longer screws \boldsymbol{C} and washers.
Test: the coupling shaft at back of positioner should easily be turnable, thereby also moving the vanes of the limit indicator. If this is not the case, loosen screws \boldsymbol{C} and flushalign the shafts of positioner and limit switch (turn coupling shaft several times).

Replace short travel indicator 12 by long travel indicator.
Screw high cover 28 (or standard cover with insert frame) on housing.

Switch functions

Feedback lever, feedback shaft and the control vanes are all connected to each other, without an intermediate transmission. The control vanes are therefore moving simultaneously with the same angle rate as the feedback lever. The length of the control vane corresponds with the swing angle of 120°.

Both control vanes are located on different planes. Each control vane can be seen independently from the other, because each has its own sensor.

By adjusting the screws, the control vanes can be adjusted relatively to the angle rate, so that e.g. one vane dives into and another dives out of the sensor (see illustration).

Setting limit switch trigger points

First loosen screw \boldsymbol{S} until disc \boldsymbol{D} is no longer blocked by bolt \boldsymbol{B}. Then turn disc by 90°, until set screws 1 and 2 are accessible.

Set trigger point switch GW1:
Turn screw 1 at mark (\cdot), until desired switch behavior is reached.
Set trigger point switch GW2:
Turn screw 2 at mark ($\cdot \bullet$), until desired switch behavior is reached.

To fix switch points turn disc again by 90°, until the bolt catches, then fasten tight the center screw \boldsymbol{S}.

Levels of control vanes (illustration without cover)

7.2 Additional Inputs / Outputs General

All versions of the SRD991 are prepared to retrofit this option.

Take current off SRD and turn-off supply air. Unscrew cover and remove electronics unit 40 (see page 47).

Attach option board 8 to connection ledge (observe orientation, see illustration). Refasten electronics unit 40 .

After initialization acknowledge message 10 by simultaneous pressing of keys UP + DOWN.

Option "Position feedback and alarm"

The analog output for position feedback indicates the valve position 0 to 100% as current signal 4 to $20 \mathrm{~mA}^{1)}$. Signal range is 3.8 to 20.5 mA , at fault approx. 0.5 mA .
The binary output for Alarm will be activated in the following cases (see Messages, page 50):

- Calibration error
(for example due to break-up of calibration) Message 3
- Output outside of limits determined during Autostart (Check mounting of feedback lever) Message 5
- Circuit to potentiometer is disturbed (cable plugged?) Message 5
- Circuit to IP module is disturbed (cable plugged?) Message 6
- No actuator movement; Message 7
- Remaining control deviation (packing is too tight?) Message 11

Signal range: 1 mA resp. $4 \ldots 6 \mathrm{~mA}$, at fault $<50 \mu \mathrm{~A}$. In the event of disturbances in the electronics of the SRD the Watchdog circuit is activated. The binary output for alarm signalizes this as "cable failure".

7.3 "Built-in pressure sensors"

The pressure sensors 50 are part of the electronics 40 , therefore, the electronics has to be exchanged for conversion to this option.

Disconnect electric power and air supply. Remove cover and electronic unit 40 (see page 47).

Remove, if present, the M3 bolts with sealing washers from both chimneys 52 . Press in a sealing plug 51 Part No. 534346013 into the top of each chimney 52 until the collar makes contact. DO NOT GREASE!

To install an electronics unit with pressure sensors, c arefully guide the tubes 50 of the pressure sensors vertically into the sealing plugs 51 . Do not twist or tilt the unit. Fasten screws on the electronics unit.

1) The direction of action of the position response message is set valve position $0 \%=4 \mathrm{~mA}$; valve position $100 \%=20 \mathrm{~mA}$
2) Factory setting. Via communication actions may be turned off or used otherwise. EB1 and EB2 can thus also be used as diagnostics inputs.

Option "Two binary outputs"
Both binary outputs AB1 resp. AB2 switch to high current as soon as the valve position is below resp. exceeds the associated limit value. If the binary outputs AB1 resp. AB2 are to be inverted (higher current no alarm, lower current alarm), the association upper/ lower alarm have to be exchanged.
Signal range 1 mA resp. 5-6 mA, at fault $<50 \mu \mathrm{~A}$.

Option "Binary inputs"

The binary inputs EB1 and EB2 for two external switches resp. sensors initiate the following actions: ${ }^{2)}$

EB1	EB2	Action 2)
closed	closed	IN SERVICE
open	closed	Position to be operated full power to 0%
closed	open	Position to be operated full power to 100%
open	open	Hold last value

An input not used is to be short-circuited (wire bridge between + and -).

Attention: Even if opening limit or closing limit are set: these actions are superimposed, and the actuator actually moves to 0 \% resp. 100 \%.

8 START-UP

WARNING

To avoid any personal injury or property damage from sudden or fast movement, during configuration and autostart:
Do not put your finger or other part at any time inside the valve or in any moving part of the actuator. Do not put your finger or other part at any time in the feedback lever mechanism. Do not touch the rear part of the positioner at any time.
Ensure you that pneumatic connection is made according chap 5.

General

First of all, the nameplate should be checked, especially with respect to indications referring to Ex / non- Ex, input signal, communciation, output signal, single / double acting, additional inputs / outputs.

8.1 Setting by means of local keys

The SRD991 can be adjusted by means of a local key-pad when the cover is off.

M (Menu)
start menu / end menu
UP / DOWN counting up/down of menu numbers resp. parameter numbers
UP + DOWN simultaneously: confirm at start, or when entering, storing, or verifying
M + UP + DOWN simultaneously: Reset = new start of SRD, thereafter initialization ${ }^{1)}$

Indication with LCD
In totally intuitive text:

SRD Main Menu	
1	Mounting
2	Autostart
3	Valve Action

Before starting the positioner the SRD has to be mounted to the actuator; power and air supply must be connected. The supply air connection must have sufficient capacity and pressure of 1.4-6 bar (20...90 psig) and should not exceed the maximum operating pressure of the actuator.

> | Attention: Configuration using local keys or the |
| :--- |
| communication interface may interfere |
| with operation of the actual process ! |
| During configuration it is recommended |
| that there is no flow through the valve. |

For Initial Start-up see next page.

> If there is no response using the local key-pad (message 1 appears, see page 50) make sure that the Write Protection is not set ! Remove the write protection using the FDT/DTM configuration software.

Indication with LEDs

The LEDs serve as indication in the following different methods:

1 constant light, ON
$1 / 4$ flashing: short ON, long OFF
$3 / 4$ flashing: long ON, short OFF
$1 / 2$ flashing: ON and OFF same duration

- OFF

1) The stored data of the positioner is not affected, and remains unchanged

8.2 OPERATION

After Power ON

INIT: After power on of the input signal, or after reset, the SRD initializes, and the various components of the electronics are checked and started. (The stored data of the positioner not affected, and remains unchanged).
The current status is stated on the LCD in clear text or indicated as LED code (see page 48).
Initialization after positioner start-up takes approx. 3 sec , then the SRD goes

- Into operation (Autostart has already been done) or
- To configuration, Menu 9.9 (with LCD the text language is selected before (changing e.g. to German language) ...

9.9 Menu Lang
9.9.1 Eng7ish
9.9.2
Deutsch
9.9.3 (Francais)

Select with keys

 UP or DOWN and confirm with UP+DOWN (together)... and the display orientation is selected ...

... then automatically continued to configuration:

Configuration

MENU: The various specifications for configuration are arranged in menus:

red		gre			Menu	Description
M	1	2	3	4		
$1 / 2$	1/2				1	Actuator system, mounting side
1/2		$1 / 2$			2	Autostart, Short Autostart
1/2			1/2		3	Valve function
$1 / 2$				1/2	4	Characteristic of setpoint
$1 / 2$	1/2	$1 / 2$			5	Limits and Alarms ${ }^{1)}$
$1 / 2$	1/2		1/2		6	Parameter for position controller
$1 / 2$	1/2			1/2	7	Manual setting of pneumatic output
1/2		1/2	1/2		8	Manual setting of valve position
$1 / 2$		$1 / 2$		1/2	9	Calibration functions for workshop
$1 / 2$			1/2	1/2	10	PROFIBUS-PA:Bus Address FOUNDATION F.:Simulate

[^2]
In Operation

After accomplished autostart, the SRD automatically goes IN OPERATION. (Additional parameters can be configured through pressing of menu key M.)

On the LCD display the process variable is indicated.

(With LED version, all LEDs are off during operation.)

Through pressing of keys UP or DOWN, additional information can be retrieved from the SRD:

$$
\begin{aligned}
& \text { Valve position } \\
& \text { Travel position } \\
& \text { Input current } \\
& \text { Digital setpoint } \\
& \text { Stem setpoint } \\
& \text { Input pressure } \\
& \text { Output pressure1 } \\
& \text { Temperature } \\
& \text { Travel sum } \\
& \text { Valve cycles } \\
& \text { Operation hours } \\
& \text { TAG Number } \\
& \text { TAG Name }
\end{aligned}
$$

SRD Version
(Certain data is available only with the corresponding options.)

Manual Operation

Through twice pressing of keys UP+DOWN (together), the SRD goes into manual operation mode, where the valve position can be set manually. Exit of menu by pressing twice of key M.

Diagnostics during Operation

If the diagnostics determines an occurrence, this is indicated in the bottom line: (resp. blinking code with LEDs).

MESSAGE: The SRD recognizes an occurrence which the user must eliminate by taking suitable steps (see page 50) in order to continue with operation. This can be e.g. a wrong configuration or missing supply air.

ERROR: During self-testing the SRD recognized an error and is no longer operable, see page 48.

[^3] HART or version "without communication".

Operation with local keys

... with LCD

- Enter the Menu mode by pressing the M key, and Menu 1 appears (see also page 31).
- Select the desired Menu item by pressing the UP or DOWN key, see table. Each press of the key moves one menu item forward (or back).
- Pressing the UP+DOWN (together) key confirms the selected menu item and enters the Parameter change mode for the selected menu item. To set a parameter see table Parameter on next page.
- Leave Menu mode by pressing M key again.

If device remains in menu mode it still is OUT OF SERVICE and AUTOSTART has to be initiated. If the instrument is IN OPERATION, the display with the valve position appears.
If a menu was selected and no further keys are pressed thereafter, the SRD switches automatically back to operation after some minutes.

... with LED

- Enter the Menu mode by pressing the M key. The red LED flashes alternately with the green LED1, which indicates the Menu item 1.
- Select the desired Menu item by pressing theUP or DOWN key, see table. Each press of the key moves one menu item forward (or back).
The flashing green LEDs indicate the selected menu item.
LED test before configuration: Move form menu item 1 to 4 and inspect that each LED lights.
- Pressing the UP+DOWN key (together) confirms the selected menu item and enters the Parameter change mode for the selected menu item.
The red LED goes off and the remaining green LED indicate the parameter or state to be set ${ }^{11}$.
To set a parameter see table Parameter on next page.
- Leave Menu mode by pressing M key again.

Red and green LEDs extinguish when device is IN SERVICE. If device remains in menu mode it still is OUT OF SERVICE and AUTOSTART has to be initiated.
If a menu was selected and no further keys are pressed thereafter, the SRD switches automatically back to operation after some minutes.

[^4]Menu structure for SRD991 / SRD960 with LCD SRD Main Menu

Menu / Display	Factory configuration	Description
1 Mounting		
1.1 Lin left	\checkmark	Linear actuator, left-hand or direct mounting
1.2 Lin right		Linear actuator, right-hand mounting
1.3 Rot cclockw		Rotary actuator, opening counter-clockwise
1.4 Rot clockw		Rotary actuator, opening clockwise
2 Autostart		
2.1 Endpoints		Adaptation to the mechanical stops only
2.2 Standard		Autostart recommended for standard application
2.3 Enhanced		Optimized control behaviour compared to Standard Autostart
2.4 Smooth resp.		Extended Autostart, Dampened control behaviour for e.g. smaller actuators
2.5 Fast resp.		Extended Autostart, Undampened control behaviour for e.g. larger actuators
3 Valve Action		
3.1 SRD		Action of Positioner:
3.1.1 Direct	\checkmark	Valve opens with increasing setpoint value
3.1.2 Reverse		Valve closes with increasing setpoint value
3.2 Feedback		Action of Feedback unit:
- 3.2.1 Direct	\checkmark	Increasing current with increasing valve position
3.2.2 Reverse		Decreasing current with increasing valve position
4 Character		
4.1 Linear	\checkmark	Linear characteristic
4.2 Eq Perc 1:50		Equal percentage characteristic 1:50
4.3 Quick open		Inverse equal percentage characteristic 1:50 (quick opening)
4.4 Customer		Custom characteristic (configuration via DTM)
5 Limits/alarms		(Not locally available with LED versions of communication FF and Profibus)
5.1 Lower limit	0 \%	Closing limit is set to input value
5.2 Cutoff low	1 \%	0%-tight sealing point is set to input value
5.3 Cutoff high	100 \%	100%-tight sealing point is set to input value
5.4 Upper limit	100 \%	Opening limit is set to input value
5.5 Splitr 0\%	4 mA	Split range 0\%: input value corresponds to 0\%
5.6 Splitr 100%	20 mA	Split range 100% : input value corresponds to 100%
5.7 Lower Alarm	-10\%	Lower position alarm on output 1 is set to input value
5.8 Upper Alarm	110 \%	Upper position alarm on output 2 is set to input value
5.9 Valve 0\%	4 mA	Configuration of rated-stroke of 0% at 4 mA
5.10 Valve 100\%	20 mA	Configuration of rated-stroke of 100\% at 20 mA
5.11 Stroke Range	$\mathrm{x}^{\circ} / 20 \mathrm{~mm}$	Configuration of nominal travel
5.12 Temp unit	${ }^{\circ} \mathrm{C}$	Configuration of the temperature unit ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
6 Parameters		
6.1 Gain closing	15	P: Proportional gain for 'close valve'
6.2 Gain opening	2	p: Proportional gain for 'open valve'
6.3 Res time cl	7.5	I: Integration time for 'close valve'
6.4 Res time op	2.4	I: Integration time for 'open valve'
6.5 Rate lim cl	0.35	T63: Setting time for 'close valve'
6.6 Rate lim op	0.35	T63: Setting time for 'open valve'
6.7 Control gap	0.1	Permitted neutral zone for control difference
7 Output		Manual setting of IP-Module for testing of pneumatic output
8 Setpoint		Manual setting of valve position:
8.1 12.5\% Steps		Setpoint changes of 12.5% steps by using push buttons Up or Down
8.21% Steps		Setpoint changes of 1% steps by using push buttons Up or Down
8.3 Do PST		Starts the Partial Stroke Test, with the given parameters by DTM
9 Workbench		
9.1 Reset Config		Resetting of configuration to settings "ex factory"
9.2 Calib. 4 mA		Calibrate input current to 4 mA
9.3 Calib. 20 mA		Calibrate input current to 20 mA
9.4 Calib. -45°		Calibrate position measuring value to -45°
9.5 Calib. $+45^{\circ}$		Calibrate position measuring value to $+45^{\circ}$
9.6 Reset all 1	\checkmark	Resetting of configuration and Calibration (!) to "ex factory" settings for single-acting output
9.7 Reset all 2		Resetting of configuration and Calibration (!) to "ex factory" settings for double-acting output
9.8 Go online		Service function: Start of controller without Autostart. Not recommended for regular use
9.9 Menu Lang		Language on LCD:
- 9.9.1 English	\checkmark	Standard English
9.9.2 Deutsch		Standard German
9.9.3 Français		Preselected / freely definable third language
9.10 LCD orient		Orientation of LCD:
9.10.1 Normal		Normal orientation of writing on LCD
9.10.2 Flipped		Reverse orientation of writing on LCD
9.11 Cal. Feedbk		Calibration of output current of position transmitter:
- 9.11.1 Cal 4mA		Calibration of the 0% at 4mA
- 9.11.2 Cal. 20 mA		Calibration of the 100% at 20 mA
10 not used with HART		
10 Bus adress - Profibus PA		
10.1 Address LSB		Ratio from Dec. 0 / Hex 00 to Dec. 15 / Hex OF
10.2 Address MSB		Ratio from Dec. 0 / Hex 00 to Dec. 112 / Hex 70
10.3 Address	126	Display of Bus Address from Dec. 1 to 127 (Hex 00 to 7F)
10 FF Config. 10.1 Simulate		
Disabled	\checkmark	Simulate disabled
Enabled		Simulate enabled
10.2 Profile		
Link Master	\checkmark	Link Master active
Basic Device		Link Master de-activated

Additional Parameters

The following parameters are accessible via communication only:

Parameter	ex factory
Control difference limit value	5%
Control difference response time	1 min
Sealing hysteresis	0.5%
Failsafe-Aktion	OFF
Power-up action	IN SERVICE
Parameter write protection	OFF
Alarm limit for total strokes	90 Mio.
Alarm limit for total cycles	90 Mio.
Dead band for valve cycles	1%
Set value source: Model Code xFxx	digital
Set value source: all others	analog
Upper pre-alarm	100%
Lower pre-alarm	0%
Hysteresis for position alarms	0.5%
Compara	

Complete parameter list see FDT/DTM Software.
8.3 Configuration of 0 and 100%

Valid for single and double acting

Configuration of 0 and 100% (continued)

Valid for single and double acting

Configuration of 0 and 100\%	Request Action	Linear Left	Linear Right	Rot cclockw	Rot clockwise	Direct	Reverse
	$\begin{gathered} 4 \mathrm{~mA}=0 \% \\ 20 \mathrm{~mA}=100 \% \end{gathered}$			V			
	$\begin{aligned} & 4 \mathrm{~mA}=100 \% \\ & 20 \mathrm{~mA}=0 \% \end{aligned}$			V			V
	$\begin{gathered} 4 \mathrm{~mA}=0 \% \\ 20 \mathrm{~mA}=100 \% \end{gathered}$						
	$\begin{aligned} & 4 \mathrm{~mA}=100 \% \\ & 20 \mathrm{~mA}=0 \% \end{aligned}$				$\sqrt{ }$		
	$\begin{gathered} 4 \mathrm{~mA}=0 \% \\ 20 \mathrm{~mA}=100 \% \end{gathered}$						
	$\begin{aligned} & 4 \mathrm{~mA}=100 \% \\ & 20 \mathrm{~mA}=0 \% \end{aligned}$						V
	$\begin{gathered} 4 \mathrm{~mA}=0 \% \\ 20 \mathrm{~mA}=100 \% \end{gathered}$						
	$\begin{gathered} 4 \mathrm{~mA}=100 \% \\ 20 \mathrm{~mA}=0 \% \end{gathered}$			V			

8.4 Description of menus

Because of optimised local operation, for configuration neither PC nor control system is required.

In case operation via local keys is not possible check if write protection is set.
Change via FDT/DTM software.

Menu 1: Actuator system, Mounting side
(Further with UP key:)

1 Mounting
1.1 Lin left
1.2 Lin riaht
1.3 Rot cclockw

W ARNING

To avoid any personal injury or property damage from sudden or fast movement, during configuration:
Do not put your finger or other part at any time inside the valve or in any moving part of the actuator. Do not put your finger or other part at any time in the feedback lever mechanism. Do not touch the rear part of the positioner at any time.

For an optimal actuator adaptation the SRD has to be configured whether it is a rotary or a linear actuator.
The positioner of the rotary actuator can work directly with the linear position sensor value. In case of a stroke actuator an error $\tan (\alpha)$ arises due to the angle of the resulting in 1% non-linearity at travel of 30°. The SRD is able to correct the travel via the tan function and thus avoid bigger linearity errors.
The rotation direction of the adapter shaft for the tap changes depending on the mounting side of the stroke actuator. "Valve closed" in one case means "Valve open" in another one.

There are rotary actuator types opening in the counter clockwise direction and others opening in the clockwise direction. This also has to be signaled to the SRD so that 0\% "Valve closed" and 100% "Valve open" are correctly assigned.

For stroke actuators mounted left of the spindle resp. directly mounted.

-	-	1	-	-	LED 2 lights up

For stroke actuators mounted right of the spindle.
\square
For rotary actuators opening the valve during counter clockwise (left) rotation.

-	-	-	-	1	LED 4 lights up

For rotary actuators opening the valve during clockwise (right) rotation.

Menu 2: Autostart

```
SRD Main Menu
```

1 Mounting
Autostart
3 Valve Action

2 Autostart 2.1 Endpoints 2.2 Standard 2.3 Enhanced

```
2 Autostart
2.3 Enhanced
2.4 Smooth resp.
2.5 Fast resp.
```


Selection between different Autostart modes
(change with key UP or DOWN):

Autostart:

To automatically adapt the positioner to the valve. Geometric data of the actuator is determined and optimally assigned to control parameters. If the "Standard" Autostart does not result in stable regulation, another Autostart mode - depending upon actuator - should be selected. At initial start-up, an Autostart should always be performed.

Attention: Autostart overwrites previous control parameters!
2.2 Ready for "Standard" Autostart:
\square
With key UP or DOWN to other Autostart modes:
2.1 Ready for "End points" Autostart:

Serves for automatic adjustment of the SRD to the mechanical end points.

-	-	1	1	-	LED 2 and LED 3 lights up

2.3 Ready for "Enhanced" Autostart:

To the optimization of the controller parameters in relation to standard mode:

-	-	1	-	1	LED 2 and LED 4 lights up

2.4 Ready for "Smooth response" Autostart:

Extended, damped controller parameters for e.g. smaller drives
\square
2.5 Ready for "Fast response" Autostart:

Extended, undamped controller parameters for e.g. larger drives
\square

WARNING

To avoid any personal injury or property damage from sudden or fast movement, during autostart:
Do not put your finger or other part at any time inside the valve or in any moving part of the actuator. Do not put your finger or other part at any time in the feedback lever mechanism. Do not touch the rear part of the positioner at any time.

After selection and start (by pressing the UP+DOWN keys) the function taking several minutes can be followed at LCD or the green LEDs.
Duration on a valve position can take some time depending on actuator volume, air supply, pressure, etc.

-	1	-	-	-	LED 1 lights up

Moving direction, mechanical starting and ending positions are determined by one or several passages of valve position range.

Ramps are entered and control system parameter is determined (ratio position/valve size).

-	-	-	1	-	LED 3 lights up

Jumps are entered for determination of control parameters.
\square
Determination of positioning speeds.

-	-	-	-	-	All LEDs are off

Determined values are saved; previous values are superscribed. The SRD is IN SERVICE again with the detected new parameters.

Menu 3: Mode of Action of SRD (and additional Position Feedback)

SRD Main Menu
1 Mounting
2 Autostart
3 Valve Action


```
3.1 SRD
3.1.1 Direct
3.1.2 Reverse
```



```
3.1 SRD
3.1.1 Direct
3.1.2 Reverse
```


Menu 4: Characteristic of setpoint

```
SRD Main Menu
```

2 Autostart
3 Valve Action
4 Valve Char.


```
4 Valve Char.
4.1 Linear
4.2 Eq Perc 1:50
4.3 Quick open
```


Function of the positioner is set at:
It will set the mode of action of the positioner and the optionally present feedback. Without the card "position feedback", the menu item "Feedback" is not displayed.
3.1 Select "SRD":

$1 / 4$	$3 / 4$	-	-	-	M short flash, LED 1 long flash

-	1	-	-	-	LED 1 lights up

3.1.1 "Normal" if increasing input signal is to initiate increasing output signal.

-	-	-	-	1	LED 4 lights up

3.1.2 "Reverse" if increasing input signal is to initiate decreasing output signal.
3.2 Select "Feedback": (if present)

$1 / 4$ - $3 / 4$ - - M short flash, LED 2 long flash - 1 - - -
3.2.1 "Normal" for increasing 1 lights up

-	-	-	-	1	LED 4 lights up

3.2.2 "Reverse" for decreasing current with increasing valve position.

A relationship between the input signal and valve position is set.

-	1	-	-	-	LED 1 lights up
41^{\prime}	"inear"				

4.1 "Linear". See Fig. 4.1

-	-	1	-	-	LED 2 lights up

4.2 "Equal percentage": Results in an equal percentage characteristic line with a position ratio of 1:50 for a valve of linear characteristic.
See Fig. 4.2

-	-	-	1	-	LED 3 lights up

4.3 "Inverse equal perc.": Results in an inversely equal percentage characteristic line with a position ratio of 50:1 for a valve of linear characteristic.
See Fig. 4.3

4 Valve Char.
4.2 Eq Perc 1:50
4.3 Oujck oden
4.4 Custom

-	-	-	-	1	LED 4 lights up

"User defined characteristic":
A characteristic line entered via communication (not via local keys) with 2 to 22 supporting points) is activated. A linear characteristic is factory set.

Note:

With versions with LCD, the values can be adjusted stepwise locally in "clear text" with keys UP or DOWN.
With versions with LED and HART or "without communication", the corresponding current of the valve is rated via analog output and entered with keys UP+DOWN.
With versions LED and fieldbus, the values can be entered only via communication.
With versions with communication, the values can be configured also with corresponding software.

Sealing tightly, linear charcteristic line

Opening limit X_{a}, Closing limit x_{z}, linear characteristic

Sealing tightly, inversely equal percentage

Opening limit x_{a}, Closing limit x_{z}, inversely equal percentage characteristic

5.2 Cutoff low

3.0%

5 Limits/A7arms
5.1 Lower 7imit
5.2 Cutoff low
5.3 Cutoff high

5.3 Cutoff high

97.0%

5.1 Setting Lower limit ("closing limit")

\section*{| - | 1 | - | - | - | LED 1 lights up |
| :--- | :--- | :--- | :--- | :--- | :--- |}

The positioner provides that IN SERVICE the valve position does not close any further than defined by the closing limit. If the setpoint value is lower than this limit, message 12 (see page 51) is produced.
By pressing of UP or DOWN keys, the value is adjusted and confirmed with keys UP+DOWN. The keys have Autorepeat: By pressing and holding of a key UP or DOWN, the value is counted upward, after some time in larger steps.

Example: Lower limit is set to 2 \%.

5.2 Setting Cutoff low ("0\% seal-tight point")

-	-	1	-	-	LED 2 lights up

If a 0% seal-tight point is given, in case the setpoint is deviated lower (e.g. 3%), the SRD provides the pneumatic output to press the valve into its seat with full force in order to tightly seal valve.
As soon as the command value is 1% * higher than this seal-tight value, the position again follows the command value.

* This ist the "Seal-tight hysteresis" factory set at 1%. The value may be changed via communication.

5.3 Setting Cutoff high (" 100% seal-tight point")

-	-	-	1	-	LED 3 lights up

If a 100% seal-tight point is pre-set and in case a certain set value is exceeded (e.g. 97%), the SRD provides that the pneumatic output presses the valve 100% into its seat with full force.
This function makes sense for 3-way valves.
Also both seal-tight points can be used in order to tightly close the respective shut-off path during partial operation.
By pressing of UP or DOWN keys, the value is adjusted and confirmed with keys UP+DOWN. The keys have Autorepeat: By pressing and holding of a key UP or DOWN, the value is counted upward, after some time in larger steps.
Example: Cutoff high is set to 97%.

5.4 Setting Upper limit ("opening limit")

The SRD provides that IN SERVICE the valve position does not open any further than defined by the opening limit. If the set value is exceeded, message 13 (see page 51) is produced.

```
Definitions
Stroke, stroke range of the membrane actuator is defined for rotary actuator as angle, angle range.
0% position is the mechanical impact at actually closed valve (caution if using handwheel and mechanically adjust- able stroke limitation!)
100% position is the mechanical impact at actually open valve.
Closing limit
    is a lower limit set via software. In normal operation the valve will not close more than set here.
    Attention: In the event of failure of the auxiliary energy no controlling is possible, therefore the springs in
    the actuator will move the valve into safety position (for single-acting actuator).
Opening limit is a upper limit set via software. In normal operation the valve will not close more than set here.
    Attention: In the event of failure of the auxiliary energy no controlling is possible, therefore the springs in
    the actuator will move the valve into safety position (for single-acting actuator).
Normal operation (= IN SERVICE) means that the position is controlled to the 4-20 mA input signal.
```


Split Range

SRD991 with HART or "Without Communication"

Example: At low current, only the smaller valve positions; from approx. 40 \% the large valve is added
(With the other versions of the SRD, these menus cannot be selected.)

5.5 Split Range 0 \%

-	1	-	1	-	LED1 and LED 3 lights up
LED: The value that was adjusted e.g. with a loop calibrator at the input of					

5.6 Split Range 100 \%

-	-	-	1	1	LED 3 and LED 4 lights up

LED: The value that was adjusted e.g. with an loop calibrator at the input of the SRD, is entered with confirmation of keys UP+DOWN as 0% value. LCD: By pressing of keys UP or DOWN the value is adjusted and confirmed with keys UP+DOWN.
The keys have Autorepeat: By pressing and holding of a key UP or DOWN, the value is counted upward, after some time in larger steps.

Example: An input current of 10.4 mA has to correspond to a valve position of 100%.

5 Limits/Alarms 5.6 Splitr 100% 5.7 Lower Alarm 5.8 Upper Alarm

5.8 Upper A1arm

91.3%


```
5.10 Valve 100 %
    98.4 %
    Confirm
```

5 Limits/Alarms 5.10 Va ve 100%
5.11 Stroke
5.12 Temp unit


```
```

5.11 Stroke

```
```

5.11 Stroke
30.0 mm
30.0 mm
1 in = 25.4 mm

```
1 in = 25.4 mm
```

5.11 Stroke $1 \mathrm{in}=25.4 \mathrm{~mm}$

```

\subsection*{5.7 Setting Lower Alarm}
\begin{tabular}{|l||l|l|l|l||l}
\hline \hline- & 1 & 1 & - & - & LED 1 and LED 2 lights up \\
\hline
\end{tabular}
When falling below the set value underneath the entered alarm limit, an alarm is activated. Message 12 (see page 51) is generated.
To switch off the alarm setting, enter the value \(-10 \%\).

\subsection*{5.8 Setting Upper Alarm}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \hline- & - & 1 & - & 1 & LED 2 and LED 4 lights up \\
\hline When surpassing the set value above the entered alarm limit, an alarm is
\end{tabular} activated. Message 13 is generated.
To switch off the alarm setting, enter the value \(+110 \%\).
By pressing of keys UP or DOWN, the value is adjusted and with keys UP+DOWN confirmed. The keys have Autorepeat: By pressing and holding of a keyUP or DOWN, the value is counted upward, after some time in larger steps.
Example: Upper Alarm set to 91.3 \%.
5.9 Valve Limits (Not with versions FF/PB/FoxCom with LED display) At Autostart the SRD determines the real limits of the actuator (which generally are a little larger then specified on the specification sheet). An actuator with 30 mm stroke, could display a real stroke of 33 mm . In order to produce a precise relationship between the input signal and the stroke, the tolerances of the actuator can be compensated with menus 5.9 and 5.10. At unchanged \(0 \%\), the actuator could be moved until exactly 30 mm are reached. Through execution of function 5.10, the current position can be declared as \(100 \%\) and at a setpoint value of \(50 \%\), the actuator will run on exactly 15 mm .
For new configuration of the strokes at \(0 \%\) or \(100 \%\), the valve must be run in the corresponding position and then must be confirmed.

\subsection*{5.9 Setting Valve 0 \%}
\begin{tabular}{|l||l|l|l|l||l}
\hline- & 1 & 1 & - & 1 & LED 1, LED 2 and LED 4 lights up \\
\hline
\end{tabular}

The actual position of the actuator is declared as \(0 \%\).

\subsection*{5.10 Setting Valve 100 \%}
\begin{tabular}{|l||l|l|l|l||}
\hline-- & - & 1 & 1 & 1
\end{tabular} LED 2, LED 3 and LED 4 lights up

The actual position of the actuator is declared as \(100 \%\).

By pressing of keys UP or DOWN, the value is adjusted and with keys UP+DOWN confirmed. The keys have Autorepeat: By pressing and holding of a keyUP or DOWN, the value is counted upward, after some time in larger steps.

Example: The actual valve position 98.4 \% is to be counted as \(100 \%\).
5.11 Setting Stroke with stroke actuators (only with LCD)
\(\square\)
The SRD measures with its feedback lever always only an angle and by means of its tangent function, a linear stroke of 0 to \(100 \%\) is calculated therefrom. In order to indicate as well a real stroke in mm , the full stroke at \(100 \%\) can be entered in this menu. The LCD display will then indicate the actual position in mm (or inch).
(Changing of display to "inch" via communication.)
By pressing of keys UP or DOWN, the value is adjusted and with keys UP+DOWN confirmed. The keys have Autorepeat: By pressing and holding of a keyUP or DOWN, the value is counted upward, after some time in larger steps.
Example: Stroke range of valve is to be 30 mm .

Along with the determination of the actuator geometry and control parameters the suitable setting parameters for the position controller are determined via function AUTO- START in Menu 2. Assessment of a control behavior generally is very subjective. Partially a quick response is requested without consideration of the overshoot width, partially a very smooth swinging is requested with minor overshoot.

We basically recommend to first perform the execution of the automatic setting via AUTOSTART in Menu 2 in order to achieve a stable control behavior. Corrections may then be made from the determined values. In rare cases AUTOSTART cannot find the optimal setting for the respective application. See "Remarks for controller optimization" following table 4.

For small actuators an improvement of the control behavior can be achieved also by increasing damping at the pneumatic output (see page 45). A further optimization may follow by repeating AUTOSTART.


etc.


Seven control parameters are combined in Menu 6 each availing of a submenu. 15 different values may be selected in each of these and pressing of UP+DOWN be entered in the position controller as constant. Controller type is a PI controller.
\begin{tabular}{|l||c|c|c|}
\hline \begin{tabular}{l} 
Parameter- \\
Designation
\end{tabular} & \begin{tabular}{c} 
Valve is \\
opening
\end{tabular} & \begin{tabular}{c} 
Valve is \\
closing
\end{tabular} & Unit \\
\hline \begin{tabular}{l} 
Proportionate \\
amplification KP
\end{tabular} & \(\mathrm{P} \uparrow\) & \(\mathrm{P} \downarrow\) & - \\
\hline \begin{tabular}{l} 
Integration time \\
constant
\end{tabular} & \(\mathrm{Tn} \uparrow\) & \(\mathrm{Tn} \downarrow\) & sec \\
\hline Positioning time & \(\mathrm{T} 63 \uparrow\) & \(\mathrm{~T} 63 \downarrow\) & sec \\
\hline \begin{tabular}{l} 
Dead band for \\
control diff.
\end{tabular} & GAP & GAP & \% of span \\
\hline
\end{tabular}

The dead band prevents (at the expense of accuracy) that the valve in the controlled condition constantly moves around the setpoint. This reduces harm to the mechanical parts of the actuator and, in particular, the valve packing.

Selection of sub-menus:
\begin{tabular}{|c|c|c|c||ll||}
\hline \(1 / 4\) & - & \(3 / 4\) & - & - & M, LED 2 flash: \\
\hline \hline \(1 / 4\) & \(3 / 4\) & \(3 / 4\) & - & - & M, LED 1 and LED 2 flash: \\
\hline
\end{tabular}

Following selection of the sub-menu the codes for the parameter values (table 4) can be selected by pressing UP+DOWN:

Table 4: Allocation of the parameter values to coding:
\begin{tabular}{|c|c|c|c|c|c||}
\hline \hline & & \multicolumn{4}{|c|}{ In LCD shown values: [in Menu Nr.] } \\
Code & \begin{tabular}{c} 
LEDs \\
123
\end{tabular} & \begin{tabular}{c}
\(\mathrm{P} \uparrow[6.2]\) \\
\(\mathrm{P} \downarrow[6.1]\)
\end{tabular} & \begin{tabular}{c} 
Tn \(\uparrow[6.4]\) \\
\(\mathrm{Tn} \downarrow[6.3]\) \\
\((\mathrm{sec})\)
\end{tabular} & \begin{tabular}{c} 
T63 \(\uparrow[6.6]\) \\
\(\mathrm{T} 63 \downarrow[6]\) \\
\((\mathrm{sec})\)
\end{tabular} & \begin{tabular}{c} 
Dead band \\
{\([6.7]\)} \\
\((\%)\)
\end{tabular} \\
\hline 1 & 1000 & 2 & 1 & 0.1 & 0 \\
\hline 2 & 0100 & 2.66 & 1.33 & 0.15 & 0.12 \\
\hline 3 & 1100 & 3.50 & 1.75 & 0.25 & 0.16 \\
\hline 4 & 00110 & 4.7 & 2.4 & 0.35 & 0.22 \\
\hline 5 & 1010 & 6.3 & 3.2 & 0.5 & 0.3 \\
\hline 6 & 01110 & 8.4 & 4.2 & 0.75 & 0.4 \\
\hline 7 & 1110 & 11.2 & 5.6 & 1.15 & 0.53 \\
\hline 8 & 0001 & 15 & 7.5 & 1.75 & 0.7 \\
\hline 9 & 1001 & 20 & 10 & 2.6 & 0.94 \\
\hline 10 & 0101 & 26.6 & 13.3 & 3.9 & 1.25 \\
\hline 11 & 1101 & 35.5 & 17.8 & 5.9 & 1.67 \\
\hline 12 & 0011 & 47.3 & 23.7 & 8.85 & 2.22 \\
\hline 13 & 1011 & 63.1 & 31.6 & 13.3 & 2.96 \\
\hline 14 & 0111 & 84.2 & 42.1 & 20 & 3.95 \\
\hline 15 & 1111 & 112.2 & -0 off - & 30 & 5.3 \\
\hline
\end{tabular}

\section*{Remarks to Controller Tuning}

If AUTOSTART does not find the optimum setting the following may be the result:
A) slow response to setpoint, long positioning time or long neutral time
B) continuous oscillation following setpoint jump
C) wide and high overshoot

For the assessment of the control 12.5 \% jumps in both directions may be performed in Menu 8. The valve dynamics may be observed at LCD or the mechanical indicator.

Prior to changing parameters for valve dynamics a number of items are to be checked, see below. The pneumatic output can be operated directly without controller via Menu 7 and the valve movement may be assessed.

In case of behavior A) check:
1. Is the Proportionate gain \(\mathrm{P} \uparrow\) (Menu 6.1) or \(\mathrm{P} \downarrow\) (Menu 6.2) too small? Remedy: Increase parameters according to chart 4.
2. Is the air pressure high enough to possibly overcome the actuator spring force and friction?
Remedy through increasing air pressure.
3. Is the actuator volume high, possibly requiring an increased air capacity for fast valve movement?
Remedy: through booster, see accessories, or spool valve option.
(Continued on next page)
4. Was AUTOSTART performed in Menu 2 and did messages 8 resp. 9 occur (messages, see table page 41)? Remedy: "AUTOSTART" in Menu 2 resp. observe information in table, page 51.
5. Has the parameter for the positioning time been set at a value too high?
Remedy: decrease both parameters "T63" in Menu 6.5 or 6.6 .
6. Is valve packing too tight resulting in a very high friction?
7. Is the supply air filter blocked? Remedy - see page 47.
8. Has the supply air been contaminated by small oil drops, particulate or are pneumatic parts possibly blocked?
Remedy: exchange pneumatic parts; possibly use a suitable air supply station.

Behaviors B) and C) check:
1. Is the air capacity possibly too high, e.g. through spool valve or booster?
Remedy: Work, if necessary, without booster or use version without spool valve.
2. Is the air achievement throttle too far open with a small drive, with high supply air pressure? Remedy: damping screw, to more significant throttling.
3. Has the air supply pressure been set too high? Remedy: reduce pressure install pressure reducer.

Changing valve dynamics during behavior A ):
If valve has a high friction (for example, often the case in small rotary actuators due to low air supply pressure or due to a valve seat packing which is too tight) then the valve position gets stuck after a setpoint jump and possibly is recontrolled via the resetting time Tn , possibly after quite some time has elapsed.
Basically, the following is possible:
a) to accept a remaining deviation
b) to accept some response procedures (such as remaining in over-response for a short time, and remaining below setpoint and trailing).

When deciding a), "Tn" should become ineffective, table value (15). Compensating " \(P(k p)\) " should be increased until the setpoint jumps reach the setpoint within a short period of time and without significant over-response (adapt to both movement directions).

When deciding b) start as in a) above. Thereafter "Tn" is reswitched and decreased until the setpoint deviation has been re-controlled within a short period of time and without long after-response (adapt in both movement directions). It is recommended to maintain the Tn's for both directions about the same.
If a post oscillation occurs after a setpoint jump, "Tn" is selected too small, possibly " \(\mathrm{P}(\mathrm{kp})\) " was selected too large.

The positioning time "T63", also called valve damping, does not have an effect during AUTOSTART in Menu 2, however, setpoint jumps in Menu 8 reach the position controller in a damped condition which then is not easily stimulated to oscillation. This behavior is also true for the setpoint input. This enables setting the controller to higher " \(\mathrm{P}(\mathrm{kp})\) " values without producing oscillations in the process. On one side this helps the position control to level disturbances due to friction, changes in load or air supply pressure changes faster. On the other hand it helps the superimposed valve control circuit that neutral times in the valve control route do no have such a big effect (stability in valve control circuit).

Changing valve dynamics during behavior B ):
Increase "Tn" for both movement directions, possibly turnoff and proceed as described in behavior A) alternative b).

WARNINGTo avoid any personal injury or property damage from sudden or fast movement, during use of Menu 7 pneumatic output: Do not put your finger or other part at any time inside the valve or in any moving part of the actuator. Do not put your finger or other part at any time in the feedback lever mechanism. Do not touch the rear part of the positioner at any time.

\section*{Menu 7: Pneumatic output (for trouble-shooting)}

SRD Main Menu
5 Limits/A7arms
6 Parameters
Output


Serves to check the pneumatic parts of the positioner and the right valve piping by directly applying current to the IP module with the UP and DOWN keys (no control; software limit values such as "stroke limits" or "tight closing" are ignored).

The current of the IP module is increased by about 3\% in 32 steps. By measuring the output pressure generally the following characteristic line of the IP module is achieved. The ramp also may be more steep or flat depending on the air supply pressure.


The pneumatic works precisely, if the actuator begins movement in section II and runs latest in section IV into the end position.

If no reaction is shown, check:
- does air supply exist? - is plug connected to IP module?

If these items are okay, possibly the electronics or a pneumatic part is defective. See also page 47.
After leaving this menu (by pressing the M key or UP+DOWN) the actual setpoint is automatically restarted.

W A R N ING To avoid any personal injury or property damage from sudden or fast movement, during use of Menu 8 manual setting of valve position: Do not put your finger or other part at any time inside the valve or in any moving part of the actuator. Do not put your finger or other part at any time in the feedback lever mechanism. Do not touch the rear part of the positioner at any time.

\section*{Menu 8: Manual setting of valve position}

etc.



For the purpose of checking the control reaction of the actuator to a setpoint jump can be observed via the indicator. As far as the device is \(\operatorname{IN}\) SERVICE the UP/DOWN keys can initiate jumps of 12.5 \% (or 1 \%) each. The starting value for Menu 8 is always the current setpoint value.
If the control behavior is to be improved, this can be reached by performing a complete Autostart (see Menu 2) or through manual tuning (see Menu 6).
After leaving this menu the existing setpoint value at the input is automatically restarted.

This menu point can also be called up under normal operating conditions, by twice pressing of key M.

\subsection*{8.3 Do PST}

With this function, the Partial Stroke Test is started, with the given parameters by DTM. If the test is passed back to the menu.
If the PST is not passed, the error message "PST error" appears on LCD.

Menu 9: Calibration functions (for workshop)

SRD Main Menu
7 Output
8 Setpoint
9 Workbench
\begin{tabular}{|l|l|}
\hline 9 & Workbench \\
9.1 & Reset Config \\
9.2 & Calib 4 mA \\
9.3 & Calib 20 mA \\
\hline
\end{tabular}


Factory calibrations are carried out with sufficient accuracy and remain unchanged during life time. However, an alignment may become necessary in some cases after servicing hardware components.

\subsection*{9.1 Reset Configuration to "ex factory" settings}
\(\square\)
It is possible to restore the configuration existing at time of delivery via this function. This may become necessary if it is unclear what had been changed per menu or in the event that a positioner was taken from one actuator and mounted to another actuator.
Following this function the device is turned to condition OUT OF SERVICE. This has to be followed by Autostart for the purpose of adapting the calibration to the actuator and to start IN SERVICE.
The parameters of the factory setting are listed in table Menu Structure (page 27).

The calibration of the input current or position sensor makes sense, if after exchange of the electronics, the valve position is inaccurately displayed.

Calibration of input current (Only with SRD with analog setpoint; does not apply to fieldbus instruments.)
Serves to equalize possible inaccuracies in the complete current loop.

\subsection*{9.2 Calibration of input current to 4 mA}
\(\square\)
The present input current value is taken over as " 4 mA " when pressing keys UP+DOWN.

\subsection*{9.2 Calibration of input current to 20 mA}
\(\square\)
\begin{tabular}{|c|c|c|c|c|c}
\hline- & 1 & 1 & - & - & LED 1 and LED 2 lights up \\
\hline \hline
\end{tabular}
The present input current value is taken over as " 20 mA " when pressing keys UP+DOWN.

Calibration of position sensor (angle calibration)
The angle pertaining to the vertical tap position (arrow mark) is factory calibrated for the position tap. If the position sensor or the electronics board is exchanged the mechanical and electric tolerances have to be aligned through recalibration. See Service Instruction manual.
9.4 Calibration of position sensor value to \(-45^{\circ}\)
\begin{tabular}{|l|l|l|l|l||l|}
\hline \hline- & - & - & 1 & - & LED 3 lights up \\
\hline The present position value is taken over as angle \(-45^{\circ}\) when pressing keys
\end{tabular} UP+DOWN.
9.5 Calibration of position sensor value to \(+45^{\circ}\)

9 Workbench
9.6 Reset all 1
9.7 Reset all 2
9.8 Go Online
9 Workbench
9.7 Reset all 2
9.7 Reset all 2
9.8 Go Online
9.8 Go Online
9 Workbench
9.6 Reset al1 1
9.7 Reset al1 2
9.8 Go Online


\subsection*{9.9 Selection of menu language \({ }^{1)}\)}

One of three of the programmed languages can be selected (only with version with LCD display)
Ex-factory the active language is always English. Changing to one of the other two languages, can also take place during operation.

The third menu language can be selected and was already programmed in the factory according to customer order. If a different third menu language is desired, then the language file can be downloaded from our website:
http://www.foxboro-eckardt.eu/download/PLFselector.html Thereafter download the file from the PC via FDT/DTM-Software onto the SRD. See also references on the internet page.

\subsection*{9.10 LCD Orientation \({ }^{1)}\)}

Display normal or turned by \(180^{\circ}\).
9.6 Resetting of Configuration and Calibration to "ex factory" settings For the exchange of the electronics the device must be configured whether the pneumatic output is single-acting or double-acting so that the controller shows the correct behavior during the next start-up.
Caution: The current calibration for inputs and outputs, the angle calibration and all other calibrations are reset to their factory defined condition!
9.6 Resetting of Configuration and Calibration to "ex factory" settings - for single-acting pneumatic output
\begin{tabular}{|l||c|c|c||c|}
\hline- & - & - & - & 1
\end{tabular} LED 4 lights up pressing UP+DOWN keys simultaneously.
9.7 Resetting of Configuration and Calibration to "ex factory" settings - for double-acting output
\begin{tabular}{|l||c|c|c|c||c|}
\hline- & 1 & - & - & 1 & LED 1 and LED 4 lights up \\
\hline
\end{tabular} pressing UP+DOWN keys simultaneously.

\subsection*{9.8 Go Online without Autostart}

In principle, the first startup runs an Autostart in which the SRD is optimally adapted to the actuator, then the SRD goes online and begins to regulate. This service function sets the SRD directly online, without an Autostart. Only for test purposes. Not recommended for regular use.

\section*{Configuration functions for all SRD versions with LCD}
```

```
9 Workbench
```

```
9 Workbench
9.7 Reset al1 2
9.7 Reset al1 2
9.8 Go Online
9.8 Go Online
9.9 Menu Lang
```

```
9.9 Menu Lang
```

```
\begin{tabular}{|l|}
\hline 9.9 Menu Land \\
9.9.1 English \\
9.9.2 Deutsch \\
9.9.3 (Francais) \\
\hline
\end{tabular}

```

9 Workbench
9.9 Menu Lang
9.10 LCD Orient
9.11 Cal feedbk

```


\subsection*{9.11 Calibration of Option "Position Feedback 4-20 mA"}

Connect 24 V DC to the terminals of this option (see page 23) and insert a precise ampmeter into this loop.
Selecting "Cal. 4 mA " should result a current of 4 mA . Calibrate with keys UP or DOWN. Confirm with keys UP+DOWN.

Selecting "Cal. 20 mA " should result a current of 20 mA .
Calibrate with keys UP or DOWN. Confirm with keys UP+DOWN.
1) The menus 9.8 and 9.9 appear automatically at initial start-up, i.e. if the SRD is connected the first time to the electrical supply.

\section*{SRD991 with PROFIBUS PA:}

\section*{Menu 10: Bus Address}

SRD Main Menu
8 Setpoint
9 Workbench
10 Bus address

10 Bus address
10.1 Address LSB
10.2 Adresse MSB
10.3 Address
```

10 Bus address
10.1 Address LSB
10.2 Adresse MSB
10.3 Address

```

\subsection*{10.2 Address MSB} Dec: 48 Hex: 30

Upper 3 bits \(\pm 16\)

\section*{10 Bus address}
10.1 Address LSB
10.2 Address MSB
10.3 Address


Here the bus address of the SRD can be indicated and changed. The bus address is in the value range of 0 to 127; for the display 7 bits are required. Each bit has a specific value (bit \(1=1\), bit \(2=2\), bit \(3=4\), bit \(4=8\), bit \(5=16\), bit \(6=32\), bit \(7=64\) ). The bus address is then the total of the individual values.

To display this with 4 LEDs, selection must be made between the lower and upper 4 bits (whereby the highest bit 8 has no usage and is always 0 ).

\subsection*{10.1 Selection of lower 4 bits:}

\section*{\begin{tabular}{|l|l|l|l|l|l}
\hline \(1 / 4\) & \(3 / 4\) & - & - & - & M short flash, LED 1 long flash \\
\hline
\end{tabular}}

With UP or DOWN key to selection of upper 4 bits:
10.2 Selection of upper 4 bits:
\begin{tabular}{|l|l|l|l|l||}
\hline \hline \(1 / 4\) & - & - & - & \(3 / 4\) \\
M short flash, LED 4 long flash \\
\hline
\end{tabular}

Upon selection, the bits are displayed. When pressing UP or DOWN keys, the value is always changed by 1 . Pressing keys UP+DOWN, the newly entered address will be activated.

The bus address is the total of the individual values:
Values of the lower 4 bits and the upper 4 bits:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & [1] & [2] & [4] & [8] & Value of the bits & - & [16] & [32] & [64] & - & Value of the bits \\
\hline - & - & - & - & - & 0 & - & - & - & - & - & 0 \\
\hline - & 1 & - & - & - & 1 & - & 1 & - & - & - & 16 \\
\hline - & - & 1 & - & - & 2 & - & - & 1 & - & - & 32 \\
\hline - & 1 & 1 & - & - & 3 & - & 1 & 1 & - & - & 48 \\
\hline - & - & - & 1 & - & 4 & - & - & - & 1 & - & 64 \\
\hline - & 1 & - & 1 & - & 5 & - & 1 & - & 1 & - & 80 \\
\hline - & - & 1 & 1 & - & 6 & - & - & 1 & 1 & - & 96 \\
\hline - & 1 & 1 & 1 & - & 7 & - & 1 & 1 & 1 & - & 112 \\
\hline - & - & - & - & 1 & 8 & & & & & & \\
\hline - & 1 & - & - & 1 & 9 & & & & & & \\
\hline - & - & 1 & - & 1 & 10 & & & & & & \\
\hline - & 1 & 1 & - & 1 & 11 & & & & & & \\
\hline - & - & - & 1 & 1 & 12 & & & & & & \\
\hline - & 1 & - & 1 & 1 & 13 & & & & & & \\
\hline - & - & 1 & 1 & 1 & 14 & & & & & & \\
\hline - & 1 & 1 & 1 & 1 & 15 & & & & & & \\
\hline
\end{tabular}

Note: Addresses 0 and 127 should not be used. Address 126 (delivery condition) is not permitted for cyclical operation.
For further information see TI EVE0105 P.
In the version with LCD indicator, the address is displayed in decimal and hexadecimal number system.

\subsection*{10.3 Address}

With LCD indicator, this function is recommended, whereby the address can be completely entered, without separation in LSB and MSB.
The keys have Autorepeat: By pressing and holding of a key UP or DOWN, the value is counted upward, after some time in larger steps.

SRD991 with FOUNDATION Fieldbus:

\section*{Menu 10: FF Configuration}

SRD Main Menu
8 Setpoint
9 Workbench
10 FF Config


> 10.1 Simulate 10.1.1 Disabled 10.1 .2 Enabled
```

10 FF Config
10.1 Simulate
10.2 Profile

```



Special settings for Foundation Fieldbus device.

\subsection*{10.1 Simulate enable / disable}
\[
\begin{array}{|l|l|l|l|l|l|}
\hline 1 / 4 & 3 / 4 & - & - & - & \text { M short flash, LED } 1 \text { long flash } \\
\hline
\end{array}
\]

The SRD991 sends during normal operation its actual Position-ActualValue \({ }^{1)}\) back to the control system.
If, however, "Simulate" is released in the SRD and in addition via communication Simulate is activated, then a simulation value coming from the control system is sent back as an actual value to the control system. In this way within the control system, e.g. the reaction to specific valve adjustments can be tested without having to adjust the valve - the SRD regulates toward the "accurate" setpoint value.
For further information about the Simulate see TI EVE0105 Q.

\subsection*{10.1.1 Simulate Disabled}
\begin{tabular}{|l|l|l|l|l||l|}
\hline- & 1 & - & - & - & LED 1 lights up \\
\hline Disable simulate. & \\
\hline
\end{tabular}

Disable simulate. The real valve position will be indicated.
10.1.2 Simulate Enabled
\begin{tabular}{|l||c|c|c|c|}
\hline \hline- & - & - & - & 1 \\
LED 4 lights up \\
\hline Release simulate.
\end{tabular}
10.2 Foundation Fieldbus Profile: Activate Link Master
\begin{tabular}{|l|l|l|l|l|l|}
\hline \(1 / 4\) & - & \(3 / 4\) & - & - & M short flash, LED 2 long flash \\
\hline
\end{tabular}
10.2.1 Link Master active
\begin{tabular}{|l||l|l|l|l||l|}
\hline- & 1 & - & - & - & LED 1 lights up \\
\hline
\end{tabular}

This SRD becomes the Link Master if Control System is down.
10.2.2 Basic device
\begin{tabular}{|l|l|l|l|l|l|}
\hline \hline- & - & - & - & 1 & LED 4 lights up \\
\hline \hline
\end{tabular}

This SRD becomes not the Link Master if Control System is down.

By using the UP or DOWN keys the desired condition can be selected and entered through pressing keys UP+DOWN.

\subsection*{8.5 Setting of the travel indicator}

The mechanical travel indicator is coupled to the feedback shaft of the positioner by a gear. The gear has two selectable ratios \({ }^{1)} 1: 2\) and \(1: 6\).

\section*{Selecting gear ratio:}

For rotation angles of the feedback shaft less than \(30^{\circ}\) select a ratio \(1: 6\). This gear selection amplifies the feedback shaft rotation angle six times and for example, a \(20^{\circ}\) angle is shown as \(120^{\circ}\).

For rotation angles greater than \(30^{\circ}\) select a ratio of \(1: 2\). This gear selection amplifies the shaft rotation angle by a factor of two and for example, a \(45^{\circ}\) angle is shown as \(90^{\circ}\).

For rotary actuators the rotation angle is equal to the rotation angle of the actuator. Consequently, a \(90^{\circ}\) rotation angle will result in a \(180^{\circ}\) display angle for the \(1: 2\) gear ratio.

For linear actuators the rotation angle is determined by travel span and feedback lever length. In this case, an exact \(180^{\circ}\) display angle can only be achieved for a \(30^{\circ}\) rotation angle using a \(1: 6\) gear ratio. If any other rotation angle results, either the closed or full open positon can be set to be indicated at, for example \(0^{\circ}\) or \(180^{\circ}\). However, if the closed position is chosen for display, then the full open display position angle is dependent on travel span, feedback lever length and gear ratio. If the full open position is chosen for display, then the closed positon angle becomes dependent.

\section*{Setting gear ratio:}

Remove the travel indicator 12 . Pull out the pin \(\mathbf{1 2 b}\) for a ratio \(1: 2\) or push in the pin for a ratio \(1: 6\). Use a smooth turning operation to free the gears and to set the pin 12b against the stop. See illustration.


Turn the travel indicator 12 to the desired position, put it on the gear shaft against the stop and pinch the wire ring for secure coupling.

\section*{9 DECOMMISSIONING}

Before decommissioning the unit, disconnect the supply air and the electrical input signal.
After disconnecting the electrical input signal the last confirmed configuration of the positioner is preserved in the memory.

\section*{Exchange of device}

If a temporary decommissioning of the SRD and a later mounting to another actuator has to be carried out, before disconnecting, we recommend to Reset Configuration in Menu 9.1. So the default settings "Ex-Factory" are reactivated. This facilitates a later recommissioning.

\section*{10 MAINTENANCE}

\section*{General}

The SRD991 requires no periodical maintenance.
When replacing components during repair work, the safety requirements on page 54 must be observed!

\subsection*{10.1 Service plug and IrCom}

All basic instruments of the SRD991 are equipped with a service plug. There via RS232 a PC with FDT/DTM Software can be connected via modem EDC82 (galv. separated, not Ex).
This universal interface, together with the PC software, allows the configuration of all SRD991 versions independent of the protocol - thus versions HART, FOUNDATION Fieldbus, PROFIBUS PA, FoxCom and also the version "without communication" can be configured from the PC, without having to acquire expensive modems. For details see TI to EDC82.

The service plug (IDC connector) is accessible, if the cover \(\boldsymbol{A}\) is pushed to the side.
The connector links EDC82 modem with SRD, and from EDC82 a 9 pole subD cable links to RS232 interface of PC.


If the SRD is equipped with option "IrCom" \(\boldsymbol{B}\), communication can take place contactless via infrared with the positioner (even with closed cover!). Modem "IR Interface" (not Ex) is connected via RS232 to a PC (for practical reasons a notebook) with FDT/DTM software in a range of approx. 1 m . (If the notebook has an IrDa interface, this cannot be used, despite similar technique. The IrDa instruction set has no communication instructions for positioners.-)

\subsection*{10.2 Supply filter replacement}

An obstructed supply filter can be replaced. Unscrew the air supply fitting, remove the filter and exchange the filter with a new one.

\subsection*{10.3 Removal of the electronics unit*}

\section*{W A R N IN G}

To avoid any personal injury resulting from bursting of parts, take off air supply before any removal of electronic board.

Pull off the travel indicator 12 . To remove the electronics unit 40, loosen the 7 screws on the front.

Lift the electronic vertically upward.
Disconnect the plugs 41 and 42 (see illustration) from the board. Do not use tools to remove plugs, because components could be damaged. Tight-fitting plugs can be easily removed by tilting them diagonally inward before pulling them off.


Connect the plugs 41 and 42 to the new electronics unit 40 and attach the new unit by using the 7 screws on the front (attention with the cables).

\section*{11 TROUBLE-SHOOTING GUIDE}

The components of the positioner are under constant surveillance by the installed micro controller. Errors detected are displayed in LCD or indicated by the LEDs.

Certain conditions (such as "Stroke limitation active") are displayed in LCD or indicated by the LEDs as message.

\subsection*{11.1 Errors detected during initialization}

After start-up or reset several initialization phases are passed through which are shown in LCD or in the green LEDs. If this phase stops an error was detected.
If after renewed reset \({ }^{1)}\) the indicator stops at error code the device is probably defective and should be sent to the manufacturer for repair. Stating the error code will be of help to the Repair and Service Dept.

LED Error Codes (with LCD in true text)


LED indication for diagnosis, errors
The following combinations are possible:
After start / reset: ( \(\mathrm{XXXX}=\) error code)
M 1234
- X X X X Error detected during Init
s. 11.1

Device in normal operation:
M 1234
\begin{tabular}{lllllll}
1 & - & - & - & - & Cyclical self-test detects errors & s. 11.2 \\
- & - & - & - & - & diagnosis without LED inform & s. 11.3 \\
\(3 / 4\) & x & x & x & X & flashing: message & s. 11.4
\end{tabular}

\subsection*{11.2 Errors detected during self-test}

During cyclical self-test certain components of the SRD are under constant surveillance. At trouble detection in the electronics, output y1 becomes pressureless ('fail safe position'). If after reset \({ }^{1)}\) the display shows the error again the device is probably defective and should be sent to manufacturer for repair.
\begin{tabular}{||c||c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ LEDs } & \\
red \\
M & 1 & 2 & \multicolumn{2}{c|}{ green } & \\
\hline \hline 1 & - & - & - & - & Description \\
\hline
\end{tabular}

\subsection*{11.3 Diagnosis without LED or LCD inform}
\begin{tabular}{|c|c|c|}
\hline Fault & Possible cause & Solution \\
\hline \multirow[t]{5}{*}{Positioner not operational using key pads} & No input signal at 11, 12 & Connect input signal \\
\hline & Local operation blocked (write protection) & Remove blockage via communication \\
\hline & No automatic power up (Reset) & Reset SRD with keys \\
\hline & A key got jammed & Release cover screws, check menu functions, retighten cover \\
\hline & Failure in the positioner & send device to manufacturer \\
\hline \multirow[t]{6}{*}{Autostart not completed (> 45 min )} & Actuator volume too large & stop Autostart and carry out extended Autostart, see chapter 8.4, Menü 2 or apply booster \\
\hline & \multirow[t]{2}{*}{Failure in the positioner, otherwise Message 8, 9} & carry out Autostart again, see chapter. 8.1 and 8.4, Menu 2 carry out Reset configuration \\
\hline & & send device to manufacturer \\
\hline & \multirow[t]{2}{*}{Autostart remains stagnant for a longer time ( \(>10 \mathrm{~min}\) ) in step 1 or 2 (LED 1 or 2 lights up), otherwise message 8} & Feedback lever (at stroke actuator) incorrectly mounted. Verify installation of feedback lever, see chapt. 4; flat part points to arrow on housing \\
\hline & & Coupling piece (at rotary actuator) incorrectly turned ( \(R\) and \(L\) mixed up): Verify direction of rotation, see chapt. 4; flat part points to arrow on housing \\
\hline & \begin{tabular}{l}
Autostart remains stagnant for a longer time (>10 min) in step 3 \\
(LCD: shows"Control params") \\
(LED: \#3 lights up)
\end{tabular} & At large volume actuators the Autostart can possibly remain stagnant for a longer time (>10 min) in step 3, prior to continuing in step 4 \\
\hline \multirow[t]{3}{*}{Actuator does not react to a change in the input signal} & No Autostart performed. & Perform Autostart. \\
\hline & Positioner is not IN OPERATION & Switch positioner IN OPERATION, see chap. 8.2 resp. Autostart or via Configurator \\
\hline & Setpoint source is configured wrong & Correct configuration via configurator \\
\hline \multirow[t]{4}{*}{Actuator does not attain the closed or opened position} & Autostart not carried out & carry out Autostart \\
\hline & Supply pressure too low & check supply air pressure \\
\hline & Travel limit is set Message 12, 13 & check settings, see chapter 8.4, Menu 5 \\
\hline & Angle position linearization, positioner action or characteristic curve is set incorrectly (e.g. 'Custom', but values are missing) & check settings, see chapter 8.4, Menus 1, 3, 4 \\
\hline \multirow[t]{4}{*}{Unstable behavior, position control circuit oscillates} & Autostart incomplete, therefore, control parameters not suitable & carry out complete Autostart, see chapter 8.4, Menu 2 \\
\hline & Small actuator volume but high air capacity & increase damping at pneumatic output, see chapter 8.4, Menu 6 reduce gain ( \(P\) parameters) \\
\hline & Friction on valve packing too great & loosen packing gland slightly or replace \\
\hline & IP module or Pneumatic amplifier defective & change module, pneumatic amp \\
\hline Actuator leakage & & Check the actuator and repoint \\
\hline \multirow[t]{3}{*}{Actuator reacts too sluggishly} & air capacity insufficient & attach booster \\
\hline & gain set too low & increase damping at pneumatic output, see chapter 8.4 , Menu 6 \\
\hline & positioning time T63 set too high & reduce positioning time, see chapter 8.4 Menu 6 \\
\hline \multirow[t]{3}{*}{No communication possible} & Input voltage too low & Eliminate voltage drop \\
\hline & Faulty protocol, communicator and device type do not match & Check configuration of devices \\
\hline & Wrong electronics unit & change device \\
\hline
\end{tabular}

For tuning controller parameters see remarks on page 38.
11.4 Messages in the SRD with option "Buitt-in pressure sensors" flashing is superimposed by a tickering




\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(3 / 4\) & - & \(1 / 4\) & \(1 / 4\) & - & IP motor prob7 em \\
\hline \begin{tabular}{l} 
Message 6: \\
I/P-converter output
\end{tabular} & Connection I/P converter to electronic board faulty & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|}
\hline \(3 / 4\) & \(1 / 4\) & - & 1/4 & \multicolumn{2}{|l|}{Autostart err 2} \\
\hline \multicolumn{3}{|l|}{Message 9: AUTOSTART defective} & & Configuration to single-acting instead of double-acting actuator & Initialize factory calibration for double-acting in Menu 9.7 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(3 / 4\) & 1/4 & 1/4 & - \(11 / 4\) & \multicolumn{2}{|l|}{Ctr 1 diff error} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{4}{*}{Message 11: Remaining control deviation}} & Actuator problems (high friction or blocked) & Check actuator \\
\hline & & & & Insufficient air supply & Check air supply / air filter \\
\hline & & & & Insufficient parametes for position controls, for example, amplification too small & Check control paramter, check pneumatic components \\
\hline & & & & IP module or pneumatic amplifier defect & Check in Menu 7; replace if necessary \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 3/4 & - & - & \(1 / 4\) & 1/4 & \multicolumn{2}{|l|}{Lower stroke 7 im} \\
\hline \multicolumn{5}{|l|}{Message 12: configurated closing limit has been reached} & If this is desired, the message may be ignored, of course. & If not, the setting has to be checked in Menu 5.1 or via communication \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{LEDs} & Description of message / LCD text & Remedy \\
\hline M & 1 & 2 & 3 & 4 & & \\
\hline \(3 / 4\) & - & 1/4 & 1/4 & 1/4 & Maintainance & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Message 14: \\
Maintenance \\
required
\end{tabular}} & & Operating point of controller is outside of permissible tolerance & Pneumatic components have to be checked and if necessary readjusted. Filters are possibly blocked and have to be replaced \\
\hline M & 1 & 2 & 3 & 4 & & \\
\hline \(3 / 4\) & 1/4 & 1/4 & 1/4 & 1/4 & Unforeseen & \\
\hline \multicolumn{5}{|l|}{Message 15:} & Not defined & \\
\hline
\end{tabular}

\section*{12 SAFETY REQUIREMENTS}

\subsection*{12.1 EMC and CE}

For notes regarding Electromagnetic compatibility EMC and CE labels see Product Specifications Sheet PSS EVE0105 A.

In order to ensure EMC protection, the black electronic cover made of conductive plastic has to be screwed to the housing, see page 47.

\subsection*{12.2 Explosion protection}
(Only if ordered)
Technical data for explosion protection see Product Specifications Sheet PSS EVE0105 A or Certificates of Conformity EX EVE0105 A.

For installations located in explosive atmospheres, all relevant national regulations and installation conditions must be observed, e.g. in the Federal Republic of Germany ElexV and DIN VDE 0165.

\section*{13 SYSTEM CONFIGURATION}

The safety requirements (see above) must be observed!

\subsection*{13.1 HART Communication}

When using the 'communication' (an alternating current signal, which is modulated onto the \(4-20 \mathrm{~mA}\) signal), it must be observed that the connected outputs are suitable for the used frequency ranges. Apart from the load, also the alternating current impedances have to be observed. It is recommended therefore, to use only suitable instruments.

To eliminate crosstalk between leads and to reduce disturbances through electromagnetic influences, it is recommended to use twisted paired shielded leads ( \(0.3 \ldots 2.5 \mathrm{~mm}^{2}\), max. \(100 \mathrm{pF} / \mathrm{m}\) ).
The capacities of the leads and the connected instruments must not exceed the maximum values for HART.

All components which are connected to the SRD in an explosion hazardous area, require an Ex-Approval. The applicable limit values must not be exceeded. These limit values also have to be adhered to when connecting additional capacitances, inductances, voltages and currents.

\section*{Measuring HART Communication Signal}

If a reliable communication signal can not be received, it is advisable to check the level with an oscilloscope. The first data block always comes from the configurator and the second block is the reply from the SRD.
\begin{tabular}{|l|c|c|}
\hline HART & \begin{tabular}{c} 
measured at \\
configurator:
\end{tabular} & \begin{tabular}{c} 
measured at \\
SRD:
\end{tabular} \\
\hline Configurator & \begin{tabular}{c} 
at least \\
transmits
\end{tabular} & \begin{tabular}{c} 
at least \\
\\
\hline SRD90 mVpp
\end{tabular} \\
\hline transmits & \begin{tabular}{c} 
at least \\
120 mVpp
\end{tabular} \\
\hline
\end{tabular}

\section*{Attention:}

When repairing explosion-protected equipment, observe the national regulations.

Repairs involving parts must be manufacturer's original parts.
The following applies to the Federal Republic of Germany: Repairs involving parts required for explosion protection must either be carried out by the manufacturer or by authorized personnel and confirmed by certificate.

\subsection*{13.2 FoxCom Communication}

When using the 'communication' (a rectangular signal which is modulated onto the constant current signal), it must be observed that the connected outputs are suitable for the used frequency ranges. The supply instrument must be a voltage source with an impedance of 250 ... 500 Ohm. The total of all instrument and lead capacities must be \(<60 \mathrm{nF}\). It is recommended therefore, to use only suitable instruments.

To eliminate crosstalk between leads and to reduce disturbances through electromagnetic influences, it is recommended to use twisted paired shielded leads ( 0.3 ... \(2.5 \mathrm{~mm}^{2}\), max. \(100 \mathrm{pF} / \mathrm{m}\) ).
The capacities of the leads and the connected instruments must not exceed the maximum values for FoxCom.

All components which are connected to the SRD in an explosion hazardous area, require an Ex-Approval. The applicable limit values must not be exceeded in any case. These limit values also have to be adhered to when connecting additional capacitances, inductances, voltages and currents.

\section*{Measuring FoxCom Communication Signal}

If a reliable communication signal can not be received, it is advisable to check the level with an oscilloscope. The first data block always comes from the configurator and the second block is the reply from the SRD.
\begin{tabular}{||l|c|c||}
\hline FOXCOM & \begin{tabular}{c} 
measured at \\
configurator:
\end{tabular} & \begin{tabular}{c} 
measured at \\
SRD:
\end{tabular} \\
\hline Configurator trans- & at least & at least \\
mits (Request) & 350 mVpp & 75 mVpp \\
\hline SRD transmits & at least & at least \\
(Acknowledge) & 75 mVpp & 350 mVpp \\
\hline
\end{tabular}

\subsection*{13.3 With Communication PROFIBUS-PA}

The operation of the positioner takes place digital, as per PROFIBUS-PA Profile Class B acc. to EN 50170 and DIN 19245 part 4. Data transmission via bit synchronous current modulation with a speed of 31250 bits via twisted and shielded two-wire connections acc. to IEC 1158-2, with cable shields on both sides and bus terminators according to recommendation IEC 1158-2.

The positioner has to be connected to a segment coupler, which has to be conforming to IEC 1158-2. For operation in explosion hazardous areas, a segment coupler in explosion proof version has to be used. Supply as well as communication takes place via the bus.

All components which are connected to the SRD in an explosion hazardous area, require an Ex-Approval. The applicable limit values must not be exceeded in any event. These limit values also have to be adhered to when connecting additional capacitances, inductances, voltages and currents. The FISCO model is thereby used as a basis.

Further information for observance:
"Technical Guide for PROFIBUS-Connection Technique" PROFIBUS-User Organisation, Order no. 2.141

\subsection*{13.4 With Communication FOUNDATION Fieldbus}

The operation of the positioner takes place digital, as per FOUNDATION Fieldbus Specification Rev. 1.4.
Data transmission via bit synchronous current modulation with a speed of 31250 bits of via twisted and shielded twowire connections acc. to IEC 1158-2, with cable shields on both sides and bus terminators according to recommendation IEC 1158-2.

The positioner has to be connected to components which are conforming to IEC 1158-2. For operation in explosion hazardous areas, an Ex-separator has to be used. Supply as well as communication takes place via the bus.

All components which are connected to the SRD in an explosion hazardous area, require an Ex-Approval. The applicable limit values must not be exceeded in any event. These limit values also have to be adhered to when connecting additional capacitances, inductances, voltages and currents. The FISCO model is thereby used as a basis.

Further information for observance:
"Wiring and Installation 31.25 kBit/s, Voltage Mode, Wire Medium Application Guide" by FOUNDATION fieldbus

\subsection*{13.5 System configuration}

\section*{Electrical connection}

Connection compartment see page 21
Electrical connection for SRD991
in intrinsic safe (EEx i) version


\section*{Terminals:}
\begin{tabular}{||l|c|c|c|c|c|c||}
\hline & \multicolumn{2}{|c|}{ Input } & \multicolumn{5}{|c|}{ Options } \\
\cline { 2 - 7 } & 11 & 12 & A & B & C & D \\
\hline \hline Input signal / Setpoint value & \\
\hline \begin{tabular}{l} 
HART/FoxCom/ \\
4-20mA
\end{tabular} & \(11+\) & \(12-\) & & & & \\
\hline \begin{tabular}{l} 
Fieldbus \\
acc. to IEC 1158-2
\end{tabular} & \(11^{* *}\) & \(12^{* *}\) & & & & \\
\hline \hline Options / Additonal In-/Outputs \\
\hline \begin{tabular}{l} 
Position \\
feedback
\end{tabular} & & & \(81+\) & \(82-\) & \(31+\) & \(32-\) \\
\hline Binary output & & & \(81+\) & \(82-\) & \(83+\) & \(84-\) \\
\hline Binary input & & & \(13+\) & \(14-\) & \(15+\) & \(16-\) \\
\hline Limit signal switch & & & \(41+\) & \(42-\) & \(51+\) & \(52-\) \\
\hline Potentiometer & & & & & & \\
\hline Sensor & & & & & & \\
\hline \hline
\end{tabular}
** any Polarity

\section*{Connection values}

HART / 4-20 mA
Terminals. . . . . . . . . . . . . . . 11+ / 12-
Signal range . . . . . . . . . . . . 4 ... 20 mA
Input voltage . . . . . . . . . . . . DC 12 ... 36 V (non loaded)
FOUNDATION Fieldbus
Terminals. . . . . . . . . . . . . . . 11 / 12
Bus connection . . . . . . . . . . Fieldbus interface acc. to IEC 1158-2
Supply voltage DC 9 ... \(32 \mathrm{~V}^{2)}\)
max. Supply voltage DC 36 V
Operating current . . . . . . . . . \(10.5 \mathrm{~mA} \pm 0.5 \mathrm{~mA}\)
PROFIBUS-PA
Terminals 11/12
Bus connection Fieldbus interface acc. to

Supply voltage IEC 1158-2
max. Supply voltage DC 9 ... \(32 \mathrm{~V}^{2)}\)

Operating current DC 36 V

FoxCom - digital (IT2)
Terminals.
11+ / 12-
Supply voltage DC 13 ... \(36 \mathrm{~V}^{2)}\)
max. Supply voltage DC 36 V
Operating current \(\sim 9 \mathrm{~mA}\) at DC 24 V

FoxCom - analog (IT1)
Terminals 11+ / 12-
Signal range
4 ... 20 mA
Supply voltage
DC \(13 \ldots 36 V^{2)}\)

\section*{Communication HART and ATEX Certification}

\section*{Electrical classification \\ 1) 2)}
(Electronics family AI 638 per EC- Certificate of Conformity PTB 00 ATEX 2128)
see Certificates of Conformity EX EVE0105 A


\section*{Explosion protection Zone 2}

It is recommended to use the positioner with explosion protection "intrinsically safe" (consider temperature class). In the Federal Republic of Germany these positioners may be operated in Zone 2 with non-intrinsically safe circuits if the operating values do not exceed the maximum reference values.

\section*{Type of protection FM "intrinsic safety"}
(Electronics family per BIM 638 (GH))
Cl. I, Div 1, Gp ABCD; CI. II, Div 1, Gp EFG; CI. III, Div 1 hazardous locations indoor and outdoor, T6/T4, NEMA Type 4X

\section*{Type of protection FM "non-incendive"}
(Electronics family per BIM 638 (GH))
CI. I, Div 2, Gp ABCD; CI. II, Div 2, Gp FG; CI. III, Div 2
hazardous locations indoor and outdoor, T6/T4,
NEMA Type 4X

\section*{Type of protection CSA "intrinsic safety" *)}
(Electronics family per CSA xxx)
Class I, Div. 1, Groups A, B, C, D;
hazardous locations indoor and outdoor, NEMA Type 4X *)

\section*{Communication PROFIBUS-PA and FOUNDATION Fieldbus H1}

Electrical classification \({ }^{1)}{ }^{2)}\)
(Electronics family AI 638 per EC- Certificate of Conformity PTB 00 ATEX 2128)
see Certificates of Conformity EX EVE0105 A
Type of protection ATEX "intrinsic safety"
II 2 G EEx ia IIB/IIC,
II 2 G EEx ib IIB/IIC
Temperature classes
Type AI 638 GP/GQ, Rev 2.0, T6 / T4, Model Code EAA
Certificate of Conformity . . . . PTB 00 ATEX 2128
For use in hazardous areas in circuits certified as intrinsically safe with the following maximum values:
Input circuit:
\(\mathrm{Ui}=24 \mathrm{~V}, \quad \mathrm{Ii}=380 \mathrm{~mA}, \mathrm{Pi}=5.32 \mathrm{~W}\)
\(\mathrm{Li}=5 \mu \mathrm{H}, \mathrm{Ci}=1.3 \mathrm{nF}\) ( 5.3 nF to earth)
Ambient temperature ranges:
Temperature class T4: . . . . . . \(-40^{\circ} \mathrm{C}\) to \(+80^{\circ} \mathrm{C}\)
Temperature class \(\mathrm{T} 6:\). . . . . . \(-40^{\circ} \mathrm{C}\) to \(+55^{\circ} \mathrm{C}\)

\section*{Explosion protection Zone 2}

It is recommended to use the positioner with explosion protection "intrinsically safe" (consider temperature class). In the Federal Republic of Germany these positioners may be operated in Zone 2 with non-intrinsically safe circuits if the operating values do not exceed the maximum reference values.

\section*{Type of protection FM "intrinsic safety"}
(Electronics family per BIM 638 (GP/GQ, Rev.2.0)) Cl. I, Div 1, Gp ABCD; CI. II, Div 1, Gp EFG; CI. III, Div 1 hazardous locations indoor and outdoor, T6/T4, NEMA Type 4X

\section*{Type of protection FM "non-incendive"}
(Electronics family per BIM 638 (GP/GQ, Rev.2.0))
CI. I, Div 2, Gp ABCD; CI. II, Div 2, Gp FG; Cl. III, Div 2 hazardous locations indoor and outdoor, T6/T4, NEMA Type 4X

\section*{Type of protection CSA "intrinsic safety" *)}
(Electronics family per CSA xxx)
Class I, Div. 1, Groups A, B, C, D;
hazardous locations indoor and outdoor, NEMA Type 4X *)

\footnotetext{
*) In preparation
1) With appropriate order only
2) National requirements must be observed
}

\section*{4-20 mA Intelligent without Communication (replaces SRD992) and ATEX Certification \\ Electrical classification \({ }^{1)}{ }^{2}\)}
(Electronics family AI 638 per EC- Certificate of Conformity PTB 00 ATEX 2128)
see Certificates of Conformity EX EVE0105 A

\section*{Type of protection ATEX "intrinsic safety"}
. . . . . . . . . . . . . . . . . II 2 G EEx ia IIB/IIC, II 2 G EEx ib IIB/IIC
Temperature classes
Type AI 638 HI. . . . . . . T4, Model Code EA4
Certificate of Conformity . . . . PTB 00 ATEX 2128
For use in hazardous areas in circuits certified as intrinsically safe with the following maximum values:
Input circuit:
\(\mathrm{Ui}=30 \mathrm{~V}, \mathrm{Ii}=130 \mathrm{~mA}, \mathrm{Pi}=0.9 \mathrm{~W}\)
\(\mathrm{Li}=5 \mu \mathrm{H}, \mathrm{Ci}=1.3 \mathrm{nF}\) ( 5.3 nF to earth)
Ambient temperature range:
Temperature class T4: . . . . . \(-40^{\circ} \mathrm{C}\) to \(+80^{\circ} \mathrm{C}\)

\section*{Explosion protection Zone 2}

It is recommended to use the positioner with explosion protection "intrinsically safe" (consider temperature class). In the Federal Republic of Germany these positioners may be operated in Zone 2 with non-intrinsically safe circuits if the operating values do not exceed the maximum reference values.

Type of protection FM "intrinsic safety"
(Electronics family per BIM 638 (GI, Rev 2.0))
Cl. I, Div 1, Gp ABCD; CI. II, Div 1, Gp EFG; Cl. III, Div 1
hazardous locations indoor and outdoor, T6/T4,
NEMA Type 4X

\section*{Type of protection FM "non-incendive"}
(Electronics family per BIM 638 (GI, Rev 2.0))
CI. I, Div 2, Gp ABCD; CI. II, Div 2, Gp FG; Cl. III, Div 2 hazardous locations indoor and outdoor, T6/T4, NEMA Type 4X

Type of protection CSA "intrinsic safety"
(Electronics family per CSA xxx)
Class I, Div. 1, Groups A, B, C, D;
hazardous locations indoor and outdoor, NEMA Type 4X

\footnotetext{
1)

With appropriate order only
2) National requirements must be observed
}

\section*{14 DIMENSIONS}

\begin{tabular}{|l|}
\hline mm \\
\hline in \\
\hline
\end{tabular}

*) Dimension with high cover

DIMENSIONS INOX SRD991 in stainless steel housing


\section*{mm
\([i n]\)}

```

Additional Documentation for this product
Technical Information of Attachment Kits for Positioners:
TI EVE0011 A Overview of Attachment Kits of all positioners on actuators/valves of different manufacturers
Quick Guide:
QG EVE0105 A Extract of Master Instruction for an easily to use, easy understandable and fast start-up.
This document highlights the most important aspects.
Master Instructions:
MI EVE0105 E SRD991 - all versions -
Technical Information for Fieldbus-Communication:
TIEVE0105 P SRD991/960 -PROFIBUS-PA
TIEVE0105 Q SRD991/960 -FOUNDATION Fieldbus H1
Master Instruction for HART-Communication:
MI EVE0105 B HART with Hand-Held Terminal
Technical Information
TIEVE0102 U Upgrade Kits
TIEVE0105 S SIL Functional safety
TI EVE0305 MUX Use of HART Multiplexer
Valve diagnostic-, configuration- and operation-software VALcare}\mp@subsup{}{}{TM}
MI EVE0501 V VALcare }\mp@subsup{}{}{\mathrm{ TM }}\mathrm{ Valve diagnostic for Positioners
HART/ PROFIBUS-PA, FOUNDATION Fieldbus and IRCOM

```

\section*{Additional Documentation for other products}

\section*{Specifications website}
```

PSS EVE0101 SRP981 Pneumatic Positioner
PSS EVE0102 SRI986 Electro-Pneumatic Positioner
PSS EVE0103 SRI983 Electro-Pneumatic Positioner- explosion proof or EEx d version
PSSEVE0105 SRD991 Intelligent Positioner
PSS EVE0107 SRI990 Analog Positioner
PSS EVE0109 SRD960 Universal Positioner
PSS EMO0100 Accessories for devices with HART Protocol

```

Subject to alterations - reprinting, copying and translation prohibited. Products and publications are normally quoted here without reference to existing patents, registered utility models or trademarks. The lack of any such reference does not justify the assumption that a product or symbol is free.

FOXBORO ECKARDT GmbH
Pragstr. 82
D-70376 Stuttgart
Tel. +49 (0)711 502-0
Fax +49 (0)711 502-597
e-mail to: salessupport@foxboro-eckardt.de```


[^0]:    1) Apply only to male thread
[^1]:    1) For intrinsically safe circuits please refer to certificate / data plate for max. operating voltages etc.
[^2]:    $1 / 2=$ ON and OFF flashing same duration
    Details of Menus and Parameters see following pages.

[^3]:    1) Versions without LCD: This menu can be configured only with version
[^4]:    1) Exception in Menu 6 (and at PROFIBUS Menu 10). No parameter indicated at first, but flashing rhythm with long green and short red phases.
    This points to a sub-menu.
    Then entry into parameter selection as described.
