

Contents

- power production
 - of wind turbines in wind farm
- power collection inside wind farm
- power transmission

from wind farm to shore

Wind farm (wake) power output predicition programs Numerical tools for farm output modelling: WASP/PARK (Riso): Jensen model Windfarmer (Garrad Hassan): Ainsly model FLaP (Univ. Oldenburg): NS solver

Summary wakes and wake losses

- spacing offshore >7 D with some (extreme) exceptions
- velocity reduction in wakes 10 20%
- production loss due to wakes 2 7%
- turbulence increase 8 10%
- with 8% ambient turbulence:
 - \Rightarrow total wake turbulence 10 13% (> 7 D)

Components for power collection and transmission

- cables
- transformers for voltage adaptations
- switch gears for protection and redundancy
- offshore connection platform (larger wind farms)
- onshore connection point
- (HVDC) power electronic converters (if present)
- VAR compensators for AC voltage (if required)

Limiting factors for AC transmission

- cable current limited to 1000 1500 A (ampacity)
 with 150 kV → 150 200 MW
- cable losses increase with i²
 - → high voltage to reduce losses in long cables
- availability of space for placement of equipment
- reactive-power consumption of long AC cables
- high initial costs of high-voltage equipment
- failure risk of components
- distance to shore

String and Star Topology Generator Aux power supply Turbine Bus bar To shore String and Star Topology Fairly simple power connection: Single power switch => reliable No redundancy Loss of auxiliary power

Electric fai (for 30 offsho	lure rates re wind turbines)	P+O-W-
Component	Number of Failures in 20 year life of Wind Farm		d Farm
	String Network	Looped string	Network
Array Cable	3.09	3.35	
Shore Link Cable	3.12	3.12	
MV Switchgear	0.24	0.74	
Terminations	2.98	2.98	
Total (20 yrs):	9.43	10.19	Source: Econnect UK

Electrical collection (Horns Rev)

- 5 double strings, AC 36 kV (Medium Voltage)
- no submerged connections (connections in turbines)
- triple-core copper cable with led shielding incl fibre optics for communication
- 95 and 150 mm² in strings
- 400 mm² from cluster to trafo platform
- 80 140 mm diameter
- 20 42 kg/m

Pushing Offshore Wind Energy Regions (POWER)

Summary infield power collection

- high cable laying costs
- buried at 1-2 m depth or more (currents, anchors)
- most times string lay out
- sometimes looping yet applied
- connections in wind turbine
- no substations apart from power collection point (larger wind farms)

Summary substations and connection cables

- substations are costly and brings (some) extra failure risks
- cables (+laying) are costly
- simplest approach is usually adopted to reduce investment (and costs ??)
 - → substations avoided if possible
 - losses higher than technically feasible
 - transmission voltage = collection voltage
 - → no meshing/looping (→no redundancy)
 - → no double shore connections (→no redundancy)

Summary grid connection and control

- Reactive power compensation required for medium length cables (AC connection)
- Maximum distance with AC is limited to 50-60 km
- DC-links required for remote offshore farms

